链载Ai

标题: 一篇RAG与大模型结合的最新全面综述 [打印本页]

作者: 链载Ai    时间: 2025-12-2 10:00
标题: 一篇RAG与大模型结合的最新全面综述

检索增强型生成(RAG)能够为像大型语言模型(LLMs)这样的生成型 AI 模型提供可靠和最新的外部知识,增强其能力。LLMs 已经展示了革命性的语言理解和生成能力,但仍然面临着幻觉和过时的内部知识等局限性。检索增强型大型语言模型(RA-LLMs)利用外部知识来解决 LLMs 的局限性,减少仅依赖内部知识的情况。

图1:检索增强型生成(RAG)遇见大型语言模型(LLMs)。当用户的查询超出范围时,例如,在训练数据中未见过的内容或需要最新信息来回答时,LLMs 可能会显示出较差的生成性能。在RAG的帮助下,LLMs 可以利用来自外部数据源的额外相关信息来增强文本生成能力。

RA-LLMs的全面概述,涵盖了架构、训练策略和应用
RA-LLMs框架
检索增强型大型语言模型(RA-LLMs)框架由三个主要组成部分构成:检索、增强和生成。检索可能包括不同的程序和多样的设计,可选地包含检索前和检索后的过程。检索到的文档在增强模块的辅助下进一步用于生成,而增强模块的设计可能根据生成模型中的集成阶段而有所不同。
图2:特定问答(QA)任务的基本检索增强型大型语言模型(RA-LLMs)框架的图解

图3:展示了检索增强型大型语言模型(RA-LLMs)中的检索器的图解,该检索器可以以密集或稀疏的方式实现,每种方式都包含几个关键操作。

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;display: table;border-bottom: 1px solid rgb(248, 57, 41);visibility: visible;">RA-LLMs训练方法

现有的RA-LLMs训练方法可以分为两类:无需训练的方法通常在推理时通过将检索到的知识整合到提示中直接利用检索到的信息;基于训练的方法则对检索器和生成器进行微调以提高生成性能。

根据训练策略,基于训练的方法可以进一步细分为三个组:独立训练,其中检索和生成器组件独立训练;顺序训练,它们按顺序进行训练;以及联合训练,它们一起训练。

图4:检索增强型大型语言模型(RA-LLMs)中不同训练方法的图解

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;display: table;border-bottom: 1px solid rgb(248, 57, 41);visibility: visible;">RA-LLMs应用

RA-LLMs应用按自然语言处理(NLP)应用下游任务特定领域应用分类的。具体来说,NLP应用包括问答系统、聊天机器人和事实验证;下游任务包括推荐和软件工程;特定领域应用包括科学和金融领域的AI应用。

图5:检索增强型大型语言模型(RA-LLMs)应用分类

https://arxiv.org/abs/2405.06211ASurveyonRAGMeetsLLMs:TowardsRetrieval-AugmentedLargeLanguageModels

——The End——








欢迎光临 链载Ai (http://www.lianzai.com/) Powered by Discuz! X3.5