链载Ai

标题: 一篇大模型Agent工具使用全面研究综述 [打印本页]

作者: 链载Ai    时间: 2025-12-2 10:00
标题: 一篇大模型Agent工具使用全面研究综述

使用大型语言模型(LLMs)进行工具学习已成为增强LLMs能力以解决高度复杂问题的一个有希望的范式。尽管这一领域受到越来越多的关注和快速发展,但现有的文献仍然分散,缺乏系统性的组织,为新来者设置了进入障碍。因此对LLMs工具学习方面的现有工作进行全面调查,从两个主要方面展开:(1)为什么工具学习是有益的;(2)如何实现工具学习,以全面理解LLMs的工具学习。根据工具学习工作流程中的四个关键阶段对文献进行了系统性审查:任务规划、工具选择、工具调用响应生成

图1:工具学习发展轨迹的示意图。展示了按出版年份和会议统计的论文,每个会议由一种独特的颜色表示。对于每个时间段,选择了一些对领域有重大贡献的代表性里程碑研究。(使用第一作者的机构作为代表机构)

图2:总体研究结构框架

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;display: table;border-bottom: 1px solid rgb(248, 57, 41);">为什么工具学习是有益的?

一方面,将工具整合到LLMs中可以增强多个领域内的能力,即知识获取、专业技能提升、自动化与效率以及交互增强。另一方面,采用工具学习范式可以增强响应的稳健性和生成过程的透明度,从而提高可解释性和用户信任度,以及改善系统的稳健性和适应性

    ingFang SC", miui, "Hiragino Sans GB", "Microsoft Yahei", sans-serif;font-size: 14px;letter-spacing: 0.5px;text-align: start;text-wrap: wrap;background-color: rgb(49, 49, 58);" class="list-paddingleft-2">
  1. 知识获取(Knowledge Acquisition):
    1. LLMs 的能力受限于预训练期间学习的知识范围,这些知识是固定的,不能动态更新。
    2. 通过集成外部工具,如搜索引擎、数据库和知识图谱、天气或地图工具,LLMs 能够动态获取和整合外部知识,从而提供更准确、与上下文相关的输出。
  2. 专业知识增强(Expertise Enhancement):

    1. LLMs 在特定领域缺乏专业知识,例如复杂数学计算、编程和科学问题解决。

    2. 通过使用在线计算器、数学工具、Python解释器等工具,LLMs 能够执行复杂计算、解决方程式、分析统计数据,从而增强其在专业领域的能力。

  3. 自动化和效率(Automation and Efficiency):

    1. LLMs 本质上是语言处理器,缺乏独立执行外部操作的能力,如预订会议室或机票。

    2. 通过与外部工具集成,LLMs 可以自动化执行任务,如日程安排、设置提醒、过滤电子邮件等,提高实用性和用户交互的效率。

  4. 交互增强(Interaction Enhancement):

    1. 用户查询具有多样性和多模态性,LLMs 在理解不同类型输入时面临挑战。

    2. 利用多模态工具和机器翻译工具,LLMs 可以更好地理解和响应更广泛的用户输入,优化对话管理和意图识别。

  5. 增强的可解释性和用户信任(Enhanced Interpretability and User Trust):

    1. 当前LLMs的“黑箱”特性导致其决策过程对用户不透明,缺乏可解释性。

    2. 通过工具学习,LLMs可以展示决策过程的每一步,增加操作透明度,使用户能够快速识别和理解错误来源,增强对LLMs决策的信任。

  6. 改进的鲁棒性和适应性(Improved Robustness and Adaptability):

    1. LLMs 对用户输入非常敏感,微小的变化可能导致响应的大幅变化,显示出缺乏鲁棒性。

    2. 集成专用工具可以减少对训练数据中统计模式的依赖,提高对输入扰动的抵抗力和对新环境的适应性。

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;display: table;border-bottom: 1px solid rgb(248, 57, 41);">如何实现工具学习?

图3:使用大型语言模型进行工具学习的整体工作流程左侧部分展示了工具学习的四个阶段:任务规划、工具选择、工具调用和响应生成。右侧部分展示了两种工具学习范式:一步式任务解决的工具学习和迭代式任务解决的工具学习。

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;border-left: 4px solid rgb(248, 57, 41);">任务规划(Task Planning )

    ingFang SC", miui, "Hiragino Sans GB", "Microsoft Yahei", sans-serif;font-size: 14px;letter-spacing: 0.5px;text-align: start;background-color: rgb(49, 49, 58);">
  1. 任务规划的重要性:
    1. 任务规划是工具学习过程中的首要阶段,它涉及对用户查询的全面分析,以理解用户意图。
    2. 用户的问题往往包含复杂的意图,需要被分解为多个可执行的子问题。
  2. 任务规划的步骤:
    1. 任务分解:将用户的问题分解为多个子问题,这有助于逐步解决复杂问题。
    2. 依赖关系和执行顺序:确定子问题之间的依赖关系以及它们应该被执行的顺序。

  3. 任务规划的方法:
    1. 无需调整的方法(Tuning-free Methods):利用LLMs的内在能力,通过少量示例或零示例提示来实现任务规划。例如,使用CoT(Chain of Thought)或ReACT等框架来引导LLMs逐步思考和规划。
    2. 基于调整的方法(Tuning-based Methods):通过在特定任务上微调LLMs来提高任务规划能力。例如,Toolformer等方法通过微调来增强LLMs对工具使用的意识和能力。

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;border-left: 4px solid rgb(248, 57, 41);margin-top: 0px;">工具选择(Tool Selection)

工具选择的重要性:

工具选择的分类:

    ingFang SC", miui, "Hiragino Sans GB", "Microsoft Yahei", sans-serif;font-size: 14px;letter-spacing: 0.5px;text-align: start;text-wrap: wrap;background-color: rgb(49, 49, 58);" class="list-paddingleft-1">
  1. 基于检索器的工具选择(Retriever-based Tool Selection):






欢迎光临 链载Ai (http://www.lianzai.com/) Powered by Discuz! X3.5