一个真实可落地、代码完整、部署简单的教程,手把手教你用 LlamaIndex + Neo4j(知识图谱) + Chroma(向量库) 搭建一个“能推理、会回答”的智能问答系统。
以一个企业内部 IT 支持场景为例:
员工问:“我怎么重置密码?”,系统不仅要返回操作步骤,还要知道“你是哪个部门的”——因为不同部门流程不同!
这个案例跑起来,不需要 GPU,普通笔记本就行。
所以,光靠“语义相似”检索是不够的——你得知道 “用户 → 部门 → 流程” 这个关系链。
这就轮到 知识图谱 上场了!
llama-index-graph-stores-neo4j \
llama-index-vector-stores-chroma \
neo4j \
chromadb \
python-dotenv
💡 如果你没装 Neo4j,用 Docker 一键启动。
docker run --name neo4j-kg -p 7474:7474 -p 7687:7687 \
-e NEO4J_AUTH=neo4j/password \
-d neo4j:5.18
访问 http://localhost:7474,用账号 neo4j / 密码 password 登录,看到界面就成功了!
创建一个 docs/ 文件夹,放两个文件:
docs/it_policy.md
所有员工重置密码需访问 https://reset.mycompany.com。
技术部员工可直接重置。
市场部和财务部员工需先邮件通知 IT 支持。
docs/hardware_request.md
申请新电脑:
- 技术部:登录资产系统提交申请
- 市场部:填写 OA 表单并由总监审批
- 财务部:联系行政部领取纸质申请表
# build_kg.py
from llama_index.core import SimpleDirectoryReader, KnowledgeGraphIndex
from llama_index.graph_stores.neo4j import Neo4jGraphStore
from llama_index.core import StorageContext
from llama_index.llms.openai import OpenAI # 或换成 Ollama/Qwen
# 1. 读文档
documents = SimpleDirectoryReader("docs").load_data()
# 2. 连接 Neo4j 图数据库
graph_store = Neo4jGraphStore(
username="neo4j",
password="password",
url="bolt://localhost:7687",
database="neo4j"
)
# 3. 创建存储上下文
storage_context = StorageContext.from_defaults(graph_store=graph_store)
# 4. 构建知识图谱索引(会自动调 LLM 抽取三元组!)
index = KnowledgeGraphIndex.from_documents(
documents,
storage_context=storage_context,
max_triplets_per_chunk=2,# 每段抽最多2个关系
llm=OpenAI(model="gpt-3.5-turbo"),# 你也可以用本地模型
show_progress=True
)
print("✅ 知识图谱构建完成!去 Neo4j 看看吧:http://localhost:7474")
运行:
python build_kg.py
⚠️ 注意:这一步会调用 LLM(比如 OpenAI),如果你不想花钱,可以换成 Ollama 的 qwen:0.5b 或 Llama.cpp 本地模型(LlamaIndex 支持)。
跑完后,打开 Neo4j 浏览器,输入 MATCH (n) RETURN n,你会看到类似这样的图:
[IT_Support] --(procedure_for)--> [Tech_Department]
[Hardware_Request] --(approval_flow)--> [Marketing_Department]
...
恭喜!你的知识已经结构化了!
比如用户说:“我是市场部的,怎么重置密码?”
理想流程:
(Password_Reset) --(procedure_for)--> (Marketing_Department)LlamaIndex 提供了 KGQueryEngine + RetrieverQueryEngine 混合模式。
# query_hybrid.py
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext, load_index_from_storage
from llama_index.graph_stores.neo4j import Neo4jGraphStore
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.retrievers import KnowledgeGraphRAGRetriever
import chromadb
# 1. 加载向量索引(用于补充上下文)
client = chromadb.PersistentClient(path="./chroma_db")
chroma_collection = client.get_or_create_collection("quickstart")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
vector_storage_context = StorageContext.from_defaults(vector_store=vector_store)
# 如果第一次运行,先建向量索引
try:
vector_index = load_index_from_storage(vector_storage_context)
except:
docs = SimpleDirectoryReader("docs").load_data()
vector_index = VectorStoreIndex.from_documents(
docs, storage_context=vector_storage_context
)
# 2. 初始化图谱检索器
graph_store = Neo4jGraphStore(
username="neo4j", password="password", url="bolt://localhost:7687"
)
kg_retriever = KnowledgeGraphRAGRetriever(
storage_context=StorageContext.from_defaults(graph_store=graph_store),
verbose=True
)
# 3. 混合查询引擎:先用图谱找关键事实,再用向量补充细节
query_engine = RetrieverQueryEngine.from_args(
retriever=kg_retriever,
node_postprocessors=[],
)
# 4. 问问题!
response = query_engine.query("我是市场部的,怎么重置密码?")
print("\n🤖 回答:", response)运行:python query_hybrid.py
你可能会看到这样的输出:
根据公司政策,市场部员工重置密码需先邮件通知 IT 支持。
具体操作请访问 https://reset.mycompany.com 并按提示操作。
🧪 效果对比:纯 RAG vs RAG+图谱
差距就在这里!
没有图谱,系统根本不知道“部门”这个变量会影响答案。
用 FastAPI 包一下,5 分钟变服务:
# api.py
from fastapi import FastAPI
from query_hybrid import query_engine # 复用上面的引擎
app = FastAPI()
@app.post("/ask")
defask(question:str):
response = query_engine.query(question)
return{"answer":str(response)}
运行:
uvicorn api:app --reload
然后 curl 测试:
curl -X POST http://localhost:8000/ask -H "Content-Type: application/json" -d '{"question":"我是财务部的,怎么申请电脑?"}'
搞定!你的智能 IT 助手上线了!
不用 OpenAI?
把 OpenAI() 换成:
from llama_index.llms.ollama import Ollama
llm = Ollama(model="qwen:0.5b", request_timeout=120)
本地跑,完全免费!
2.想支持更多实体?
在文档里加更多结构化描述,比如:
[Department: Marketing] has policy [Policy: Email_IT_For_Password_Reset]
3.性能优化
:auto CREATE INDEX FOR (d
epartment) ON (d.name)记住:RAG 的未来,不是“更大的 embedding”,而是“更聪明的知识组织”。
你现在就可以把这个方案套用到:
| 欢迎光临 链载Ai (http://www.lianzai.com/) | Powered by Discuz! X3.5 |