ingFang SC", miui, "Hiragino Sans GB", "Microsoft Yahei", sans-serif;font-size: 14px;letter-spacing: 0.5px;text-align: start;background-color: rgb(255, 255, 255);white-space-collapse: preserve !important;word-break: break-word !important;">ScrapeGraphAI 是一个 Python 库,它利用大型语言模型(LLM)和直接图形逻辑为网站、文档和 XML 文件创建抓取管道。这个库的特点是,用户只需要描述他们想要提取的信息,库就会自动完成抓取任务。ingFang SC", miui, "Hiragino Sans GB", "Microsoft Yahei", sans-serif;letter-spacing: 0.5px;text-align: start;text-wrap: wrap;background-color: rgb(255, 255, 255);">安装 ScrapeGraphAI ingFang SC", miui, "Hiragino Sans GB", "Microsoft Yahei", sans-serif;font-size: 14px;letter-spacing: 0.5px;text-align: start;text-wrap: wrap;background-color: rgb(255, 255, 255);" class="list-paddingleft-1">通过 pip 安装 ScrapeGraphAI: pipinstallscrapegraphai 安装 Playwright,用于基于 JavaScript 的抓取: playwrightinstall 建议在虚拟环境中安装库,以避免与其他库发生冲突。 ingFang SC", miui, "Hiragino Sans GB", "Microsoft Yahei", sans-serif;letter-spacing: 0.5px;text-align: start;text-wrap: wrap;background-color: rgb(255, 255, 255);">使用 ScrapeGraphAIingFang SC", miui, "Hiragino Sans GB", "Microsoft Yahei", sans-serif;font-size: 14px;letter-spacing: 0.5px;text-align: start;background-color: rgb(255, 255, 255);white-space-collapse: preserve !important;word-break: break-word !important;">ScrapeGraphAI 提供了三种主要的抓取管道:ingFang SC", miui, "Hiragino Sans GB", "Microsoft Yahei", sans-serif;font-size: 14px;letter-spacing: 0.5px;text-align: start;text-wrap: wrap;background-color: rgb(255, 255, 255);" class="list-paddingleft-1">SmartScraperGraph:单页面抓取器,只需要用户提示和输入源。
SearchGraph:多页面抓取器,从搜索引擎的前 n 个搜索结果中提取信息。
SpeechGraph:单页面抓取器,从网站提取信息并生成音频文件。 ingFang SC", miui, "Hiragino Sans GB", "Microsoft Yahei", sans-serif;letter-spacing: 0.5px;text-align: start;text-wrap: wrap;background-color: rgb(255, 255, 255);">示例用例 ingFang SC", miui, "Hiragino Sans GB", "Microsoft Yahei", sans-serif;font-size: 14px;letter-spacing: 0.5px;text-align: start;text-wrap: wrap;background-color: rgb(255, 255, 255);" class="list-paddingleft-1">使用本地模型的 SmartScraperGraph: 确保已安装 Ollama 并使用ollama pull命令下载模型。 示例代码展示了如何创建SmartScraperGraph实例并运行它,以获取项目列表及其描述。 使用混合模型的 SearchGraph: 使用 OpenAI 的 SpeechGraph: ingFang SC", miui, "Hiragino Sans GB", "Microsoft Yahei", sans-serif;letter-spacing: 0.5px;text-align: start;text-wrap: wrap;background-color: rgb(255, 255, 255);">输出示例ingFang SC", miui, "Hiragino Sans GB", "Microsoft Yahei", sans-serif;font-size: 14px;letter-spacing: 0.5px;text-align: start;text-wrap: wrap;background-color: rgb(255, 255, 255);" class="list-paddingleft-1">SmartScraperGraph的输出是项目及其描述的列表。
SearchGraph的输出是食谱的列表。
SpeechGraph的输出是页面上项目摘要的音频文件。
注意事项ScrapeGraphAI 库通过简化抓取过程,使得用户无需深入了解网页结构或编写复杂的抓取逻辑,就能够从网站中提取所需信息。这对于需要从多个来源收集数据的用户来说,是一个非常有用的工具。 ? Quick installThe reference page for Scrapegraph-ai is available on the official page of pypy:pypi. pipinstallscrapegraphai you will also need to install Playwright for javascript-based scraping: playwrightinstall Note: it is recommended to install the library in a virtual environment to avoid conflicts with other libraries ? ? DemoFollow the procedure on the following link to setup your OpenAI API key:link. ? DocumentationThe documentation for ScrapeGraphAI can be foundhere. Check out also the docusaurusdocumentation. ? UsageThere are three main scraping pipelines that can be used to extract information from a website (or local file): SmartScraperGraph: single-page scraper that only needs a user prompt and an input source;
SearchGraph: multi-page scraper that extracts information from the top n search results of a search engine;
SpeechGraph: single-page scraper that extracts information from a website and generates an audio file.
It is possible to use different LLM through APIs, such asOpenAI,Groq,AzureandGemini, or local models usingOllama. Case 1: SmartScraper using Local ModelsRemember to haveOllamainstalled and download the models using theollama pullcommand. scrapegraphai.graphs
graph_config{
:{
:,
:,
:,
:,
},
:{
:,
:,
},
:,
}
smart_scraper_graph(
prompt,
source,
configgraph_config
)
resultsmart_scraper_graph.()
(result)The output will be a list of projects with their descriptions like the following: {'projects':[{'title':'RotaryPendulumRL','description':'OpenSourceprojectaimedatcontrollingarealliferotarypendulumusingRLalgorithms'},{'title':'DQNImplementationfromscratch','description':'DevelopedaDeepQ-Networkalgorithmtotrainasimpleanddoublependulum'},...]}Case 2: SearchGraph using Mixed ModelsWe useGroqfor the LLM andOllamafor the embeddings. scrapegraphai.graphs
graph_config{
:{
:,
:,
:
},
:{
:,
:,
},
:,
}
search_graph(
prompt,
configgraph_config
)
resultsearch_graph.()
(result)The output will be a list of recipes like the following: {'recipes':[{'name':'SardeinSaòre'},{'name':'Bigoliinsalsa'},{'name':'Seppieinumido'},{'name':'Molechefrite'},{'name':'Risottoallapescatora'},{'name':'Broeto'},{'name':'BibarasseinCassopipa'},{'name':'Risiebisi'},{'name':'SmegiassaCiosota'}]}Case 3: SpeechGraph using OpenAIYou just need to pass the OpenAI API key and the model name. scrapegraphai.graphs
graph_config{
:{
:,
:,
},
:{
:,
:,
:
},
:,
}
speech_graph(
prompt,
source,
configgraph_config,
)
resultspeech_graph.()
(result)The output will be an audio file with the summary of the projects on the page. |