RAG的概念
01
什么是RAG?
RAG文本问答
RAG多模态问答
02
为什么用RAG?
大模型的挑战
RAG与其它技术比较
在大语言模型的优化方法中,RAG经常与Fine-tuning(FT)和提示工程相比较。我们用象限图从外部知识需求和模型适配需求两个维度来说明三种方法的差异。
提示工程:利用模型的固有功能,而对外部知识和模型适应的需求最少。
RAG:可以比作为信息检索提供量身定制的教科书模型,非常适合精确的信息检索任务。早期阶段(Naive RAG),几乎不需要对模型进行修改
FT:需要进一步训练模型,针对不同下游特定任务,需要重新训练整个庞大的模型;相当于学生随着时间的推移内化知识,适用于需要复制特定结构、风格或格式的场景。
RAG | 微调 (Fine-tuning) | |
知识更新 | 直接更新检索知识库,确保信息持续更新,无需频繁重新训练,非常适合动态变化的数据环境。 | 存储静态数据,需要重新训练用于知识和数据的更新。 |
外部知识 | 擅长利用外部资源,特别适合处理文档或其他结构化/非结构化数据库。 | 可用于将预训练中外部学习到的知识与大语言模型保持一致,但对于频繁变化的数据源可能不太实用。 |
数据处理 | 对数据的处理和操作要求极低。 | 依赖于构建高质量的数据集,有限的数据集可能无法显著提高性能。 |
模型定制 | 侧重于信息检索和融合外部知识,但可能无法充分定制模型行为或写作风格。 | 允许根据特定风格或术语调整 LLM 行为、写作风格或特定领域知识。 |
可解释性 | 答案能够追溯到具体的数据来源,提供更高的可解释性和可追踪性。 | 就像一个黑盒子,并不总是清楚模型为什么会做出某种反应,可解释性相对较低。 |
计算资源 | 需要计算资源来支持检索策略和数据库相关技术。外部数据源的整合和更新需保持维护。 | 有必要准备和整理高质量的训练数据集,确定微调目标,并提供相应的计算资源。 |
延迟要求 | 因涉及数据检索,可能带来较高的延迟。 | 经过微调的大语言模型 (LLM) 可以不通过检索直接回应,降低延迟。 |
降低幻觉 | 由于每个回答都基于检索到的实际证据,因此本质上更不容易产生错误或虚构的回答。 | 根据特定领域的数据训练模型,有助于减少幻觉,但面对未训练过的输入时仍可能出现幻觉。 |
伦理和隐私问题 | 从外部数据库存储和检索文本可能引起伦理和隐私方面的担忧。 | 训练数据中的敏感内容可能会引起伦理和隐私方面的问题。 |
RAG的分类
01
从演进范式角度分类
02
从检索与生成协同角度
RAG核心结构
01
RAG的增强功能
RAG增强是整体体系的重点,从多个角度我整理了下增强 RAG 性能的方法。从整个RAG 流程角度,我们根据现有方法的增强目标将其分为 5 个不同的组:输入、检索器、生成器、结果和整个管道。单从RAG检索一个点来看,检索增强可以包含迭代、递归&自适应三个方法。
检索增强分类
RAG评估
RAG 在 NLP 领域的快速发展和广泛采用,将 RAG 模型的评估推向了大语言模型界研究的前沿。将RAG技术引进到大模型应用场景,我们需要了解和优化 RAG 模型在不同应用场景下的性能。下面简要讲讲 RAG 的主要下游任务、数据集以及如何评估 RAG 系统。
01
RAG的下游任务
| 任务 | 子任务 | 数据集 |
|---|---|---|
02
RAG的评估项及度量指标
03
RAG的评估框架及Benchmark
† 代表基准,‡ 代表工具。* 表示自定义量化指标,偏离传统指标。鼓励读者根据需要查阅相关文献,了解与这些指标相关的具体量化公式。
RAG的应用场景
RAG技术具有广泛的应用场景,可以在文本、代码、音频、视频等多个领域发挥作用。
总的来说,RAG技术的广泛应用使其成为一个强大的工具,能够在各种领域中提供自然、准确的生成和理解能力。
RAG的生态总结
业界的RAG实战
01
RAG的落地实践问题
坑一:表格数据如何RAG
坑二:表格数据RAG效果不佳
坑三:Embedding相似度不准
坑四:自行编造产品问题
坑五:多次回复稳定性不好
02
RAG的垂直场景应用
03
多模态的RAG探索
元数据知识化
元数据智能补齐
元数据关联关系发现和构建
| 欢迎光临 链载Ai (https://www.lianzai.com/) | Powered by Discuz! X3.5 |