01。
模型概述
02。
Power 调度器
03。
PowerLM-3B
importtorch
fromtransformersimportAutoModelForCausalLM,AutoTokenizer
device="cuda"#or"cpu"
model_path="ibm/PowerLM-3b"
tokenizer=AutoTokenizer.from_pretrained(model_path)
#dropdevice_mapifrunningonCPU
model=AutoModelForCausalLM.from_pretrained(model_path,device_map=device)
model.eval()
#changeinputtextasdesired
prompt="Writeacodetofindthemaximumvalueinalistofnumbers."
#tokenizethetext
input_tokens=tokenizer(prompt,return_tensors="pt")
#transfertokenizedinputstothedevice
foriininput_tokens:
input_tokens[i]=input_tokens[i].to(device)
#generateoutputtokens
output=model.generate(**input_tokens,max_new_tokens=100)
#decodeoutputtokensintotext
output=tokenizer.batch_decode(output)
#loopoverthebatchtoprint,inthisexamplethebatchsizeis1
foriinoutput:
print(i)
04。
PowerMoE-3B
importtorch
fromtransformersimportAutoModelForCausalLM,AutoTokenizer
device="cuda"#or"cpu"
model_path="ibm/PowerMoE-3b"
tokenizer=AutoTokenizer.from_pretrained(model_path)
#dropdevice_mapifrunningonCPU
model=AutoModelForCausalLM.from_pretrained(model_path,device_map=device)
model.eval()
#changeinputtextasdesired
prompt="Writeacodetofindthemaximumvalueinalistofnumbers."
#tokenizethetext
input_tokens=tokenizer(prompt,return_tensors="pt")
#transfertokenizedinputstothedevice
foriininput_tokens:
input_tokens[i]=input_tokens[i].to(device)
#generateoutputtokens
output=model.generate(**input_tokens,max_new_tokens=100)
#decodeoutputtokensintotext
output=tokenizer.batch_decode(output)
#loopoverthebatchtoprint,inthisexamplethebatchsizeis1
foriinoutput:
print(i)
05。
模型评估
06。
结语
| 欢迎光临 链载Ai (https://www.lianzai.com/) | Powered by Discuz! X3.5 |