ML-Workspace。MyFirstMLWorkspace。fromazureml.coreimportWorkspace,Dataset#连接到你的工作区ws=Workspace.from_config()#上传CSV文件并创建数据集datastore=ws.get_default_datastore()datastore.upload_files(['./data/train.csv'],target_path='train-data/',overwrite=True)#创建一个Tabular数据集dataset=Dataset.Tabular.from_delimited_files(path=[(datastore,'train-data/train.csv')])#打印前5行数据df=dataset.to_pandas_dataframe()print(df.head())
fromazureml.coreimportExperiment,ScriptRunConfig,Workspacefromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitfromsklearn.ensembleimportRandomForestClassifierfromjoblibimportdump#加载数据集data=load_iris()X_train,X_test,y_train,y_test=train_test_split(data.data,data.target,test_size=0.2)#训练模型clf=RandomForestClassifier()clf.fit(X_train,y_train)#保存模型dump(clf,'iris_model.pkl')#上传模型到Azurews=Workspace.from_config()model=ws.models.register(model_path='iris_model.pkl',model_name='iris_model')print(f"模型已注册为:{model.name},版本:{model.version}")fromazureml.coreimportModel,Webservice,Workspacefromazureml.core.modelimportInferenceConfig#加载工作区ws=Workspace.from_config()#获取注册的模型model=Model(ws,name='iris_model')#定义推理环境inference_config=InferenceConfig(entry_script='score.py',environment=myenv)#创建容器实例服务service=Webservice.deploy_from_model(ws,name='iris-service',models=[model],inference_config=inference_config,deployment_config=None)service.wait_for_deployment(show_output=True)print(f"服务已部署在:{service.scoring_uri}")| 欢迎光临 链载Ai (https://www.lianzai.com/) | Powered by Discuz! X3.5 |