链载Ai

标题: LLM评估:从原型开发到生产部署的全流程实践(含code) [打印本页]

作者: 链载Ai    时间: 昨天 18:37
标题: LLM评估:从原型开发到生产部署的全流程实践(含code)

ingFang SC";font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">一、评估为何是LLM产品的核心竞争力

ingFang SC";font-size: medium;font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;font-weight: 400;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">在人工智能领域,大语言模型(LLM)正以惊人的速度渗透到各个行业。从金融科技的智能客服到医疗领域的病历分析,从电商的数据查询到教育行业的个性化辅导,LLM的应用场景日益丰富。然而,随着应用的深入,一个核心问题逐渐凸显:如何确保LLM在真实场景中稳定、可靠且符合预期地运行?

ingFang SC";font-size: medium;font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;font-weight: 400;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">管理学大师彼得·德鲁克曾说:"无法衡量,就无法改进。" 这句话在LLM领域尤为适用。构建一个强大的评估体系,不仅是提升模型性能的关键,更是企业在AI竞争中建立信任、合规运营和降低成本的必要手段。本文将结合实际案例,从原型开发到生产部署,详解LLM评估的全流程实践,帮助读者掌握从数据收集、指标设计到持续监控的核心方法论。

ingFang SC";font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">二、原型开发:构建可评估的LLM产品雏形

ingFang SC";font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">(一)案例背景:电商数据查询代理的需求分析

ingFang SC";font-size: medium;font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;font-weight: 400;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">假设我们为一家电商企业开发一个数据分析系统,用户希望通过自然语言与系统交互,获取关键业务指标(如客户数量、收入、欺诈率等)。通过用户调研发现,现有报告的解读门槛较高,用户更倾向于通过智能代理即时获取清晰答案。因此,我们决定构建一个基于LLM的SQL代理,能够将用户查询转化为数据库可执行的SQL语句,并返回结构化结果。

ingFang SC";font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">(二)技术栈选择与原型搭建

    ingFang SC";font-size: medium;font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;font-weight: 400;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;" class="list-paddingleft-1">
  1. 核心组件






欢迎光临 链载Ai (https://www.lianzai.com/) Powered by Discuz! X3.5