很多同学对RAG的认识仅停留在检索增强生成概念上,作为当前AI应用的当红炸子鸡,很有必要对常见RAG框架做些了解。
PS:没耐心的可直接跳到最后总结部分。
适用于基础问答、文档分析等通用场景,提供模块化组件和易用接口。
通过图结构优化复杂推理,解决多跳问答和逻辑关联问题。
支持文本、图像、表格、公式等跨模态内容理解。
针对海量数据检索效率和大规模部署优化。
降低开发门槛,支持动态知识更新。
| 场景需求 | 推荐框架 | 关键优势 |
|---|---|---|
提示:技术选型需权衡开发成本(UltraRAG零代码)、推理深度(KAG的逻辑引擎)、模态兼容性(RAG-Anything)和数据规模(FlashRAG分布式)。混合架构已成趋势,如Haystack+NodeRAG可兼顾通用性与复杂推理。
| 欢迎光临 链载Ai (https://www.lianzai.com/) | Powered by Discuz! X3.5 |