EmbeddingGemma支持100多种语言,在多语言文本嵌入基准测试(MTEB)中取得了5亿参数以下模型的最高排名。其性能可以与参数规模接近两倍的流行模型相匹敌,特别是在跨语言检索和语义搜索任务中表现突出。
EmbeddingGemma采用了Matryoshka表征学习技术,这是一个创新的设计特性。开发者可以使用完整的768维向量获得最高质量的嵌入,也可以将其截断为更小的维度(128、256或512维)以提高速度并降低存储成本,而质量损失微乎其微。
# 示例:不同维度的嵌入使用
fromsentence_transformersimportSentenceTransformer
model = SentenceTransformer("google/embeddinggemma-300m")
# 生成完整768维嵌入
full_embedding = model.encode(["示例文本"], output_dimensions=768)
# 截断为256维嵌入,适合快速检索
compact_embedding = model.encode(["示例文本"], output_dimensions=256)EmbeddingGemma构建在Gemma 3架构基础上,采用标准的Transformer编码器堆栈,具有全序列自注意力机制。这种设计非常适合文本嵌入模型的需求,不同于Gemma 3中用于图像输入的多模态双向注意力层。
通过QAT技术,EmbeddingGemma在保持模型质量的同时显著减少了内存使用。具体的量化策略包括:
EmbeddingGemma的设计初衷就是为了支持完全离线的RAG管道。结合Gemma 3模型,开发者可以构建完全本地化的智能问答系统。
# 本地RAG示例
importnumpyasnp
fromsentence_transformersimportSentenceTransformer
fromsklearn.metrics.pairwiseimportcosine_similarity
# 加载EmbeddingGemma模型
embedding_model = SentenceTransformer("google/embeddinggemma-300m")
# 文档库嵌入
documents = [
"人工智能是计算机科学的一个分支",
"机器学习是实现人工智能的重要方法",
"深度学习是机器学习的一个子集"
]
doc_embeddings = embedding_model.encode(documents)
# 查询处理
query ="什么是AI?"
query_embedding = embedding_model.encode([query])
# 相似度搜索
similarities = cosine_similarity(query_embedding, doc_embeddings)
best_match_idx = np.argmax(similarities)
print(f"最相关文档:{documents[best_match_idx]}")EmbeddingGemma的轻量化特性使其非常适合移动应用。开发者可以将整个搜索功能集成到移动应用中,无需网络连接即可实现强大的语义搜索。
对于处理敏感数据的企业应用,EmbeddingGemma提供了理想的解决方案。所有的嵌入生成都在本地设备上完成,确保敏感数据不会离开企业内部网络。
# 安装必要的依赖
pip install sentence-transformers
pip install transformers
pip install torchfromsentence_transformersimportSentenceTransformer
# 1. 加载模型
model = SentenceTransformer("google/embeddinggemma-300m")
# 2. 生成嵌入
texts = [
"今天天气真好",
"我喜欢机器学习",
"Python是一门强大的编程语言"
]
embeddings = model.encode(texts)
print(f"嵌入维度:{embeddings.shape}")
# 3. 计算文本相似度
fromsklearn.metrics.pairwiseimportcosine_similarity
similarity_matrix = cosine_similarity(embeddings)
print("相似度矩阵:")
print(similarity_matrix)EmbeddingGemma支持基于任务的提示模板,可以针对不同的使用场景生成优化的嵌入:
# 查询提示模板
defformat_query(query, task="search result"):
returnf"task:{task}| query:{query}"
# 文档提示模板
defformat_document(doc, task="search result"):
returnf"task:{task}| document:{doc}"
# 使用示例
query = format_query("人工智能的发展历史")
document = format_document("人工智能技术在过去几十年中取得了巨大进展")
query_emb = model.encode([query])
doc_emb = model.encode([document])EmbeddingGemma已经与多个流行的AI开发框架无缝集成:
# 与LangChain集成
fromlangchain.embeddingsimportHuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(
model_name="google/embeddinggemma-300m"
)
# 与LlamaIndex集成
fromllama_index.embeddings.huggingfaceimportHuggingFaceEmbedding
embed_model = HuggingFaceEmbedding(
model_name="google/embeddinggemma-300m"
)虽然 EmbeddingGemma 的预训练版本已经足够强大,但在特定领域或专业任务上,通过微调可以让其性能更上一层楼。例如,你可以使用自己业务场景中的数据(如内部知识库的问答对)来对模型进行微调,使其更懂你的“行话”。
官方推荐使用sentence-transformers库来进行微调,因为它提供了非常便捷的训练流程。
# 加载模型
importtorch
fromsentence_transformersimportSentenceTransformer
fromdatasetsimportDataset
device ="cuda"iftorch.cuda.is_available()else"cpu"
model_id ="google/embeddinggemma-300M"
model = SentenceTransformer(model_id).to(device=device)
print(f"Device:{model.device}")
print(model)
print("Total number of parameters in the model:",sum([p.numel()for_, pinmodel.named_parameters()]))
# 准备微调数据集
dataset = [
["How do I open a NISA account?","What is the procedure for starting a new tax-free investment account?","I want to check the balance of my regular savings account."],
["Are there fees for making an early repayment on a home loan?","If I pay back my house loan early, will there be any costs?","What is the management fee for this investment trust?"],
["What is the coverage for medical insurance?","Tell me about the benefits of the health insurance plan.","What is the cancellation policy for my life insurance?"],
]
# Convert the list-based dataset into a list of dictionaries.
data_as_dicts = [ {"anchor": row[0],"positive": row[1],"negative": row[2]}forrowindataset ]
# Create a Hugging Face `Dataset` object from the list of dictionaries.
train_dataset = Dataset.from_list(data_as_dicts)
print(train_dataset)
task_name ="STS"
defget_scores(query, documents):
# Calculate embeddings by calling model.encode()
query_embeddings = model.encode(query, prompt=task_name)
doc_embeddings = model.encode(documents, prompt=task_name)
# Calculate the embedding similarities
similarities = model.similarity(query_embeddings, doc_embeddings)
foridx, docinenumerate(documents):
print("Document: ", doc,"-> 🤖 Score: ", similarities.numpy()[0][idx])
query ="I want to start a tax-free installment investment, what should I do?"
documents = ["Opening a NISA Account","Opening a Regular Savings Account","Home Loan Application Guide"]
get_scores(query, documents)
fromsentence_transformersimportSentenceTransformerTrainer, SentenceTransformerTrainingArguments
fromsentence_transformers.lossesimportMultipleNegativesRankingLoss
fromtransformersimportTrainerCallback
loss = MultipleNegativesRankingLoss(model)
args = SentenceTransformerTrainingArguments(
# Required parameter:
output_dir="my-embedding-gemma",
# Optional training parameters:
prompts=model.prompts[task_name], # use model's prompt to train
num_train_epochs=5,
per_device_train_batch_size=1,
learning_rate=2e-5,
warmup_ratio=0.1,
# Optional tracking/debugging parameters:
logging_steps=train_dataset.num_rows,
report_to="none",
)
classMyCallback(TrainerCallback):
"A callback that evaluates the model at the end of eopch"
def__init__(self, evaluate):
self.evaluate = evaluate# evaluate function
defon_log(self, args, state, control, **kwargs):
# Evaluate the model using text generation
print(f"Step{state.global_step}finished. Running evaluation:")
self.evaluate()
defevaluate():
get_scores(query, documents)
trainer = SentenceTransformerTrainer(
model=model,
args=args,
train_dataset=train_dataset,
loss=loss,
callbacks=[MyCallback(evaluate)]
)
trainer.train()# CPU部署
docker run -p 8080:80 ghcr.io/huggingface/text-embeddings-inference:cpu-1.8.1 \
--model-id google/embeddinggemma-300m --dtype float32
# GPU部署(支持多种GPU架构)
docker run --gpus all --shm-size 1g -p 8080:80 \
ghcr.io/huggingface/text-embeddings-inference:cuda-1.8.1 \
--model-id google/embeddinggemma-300m --dtype float32# 使用ONNX优化版本
docker run -p 8080:80 ghcr.io/huggingface/text-embeddings-inference:cpu-1.8.1 \
--model-id onnx-community/embeddinggemma-300m-ONNX \
--dtype float32 --pooling meanEmbeddingGemma支持针对特定领域的微调,以获得更好的性能:
fromsentence_transformersimportSentenceTransformer, InputExample, losses
fromtorch.utils.dataimportDataLoader
# 准备训练数据
train_examples = [
InputExample(texts=['查询文本','相关文档'], label=1.0),
InputExample(texts=['查询文本','不相关文档'], label=0.0),
]
# 创建数据加载器
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=16)
# 加载预训练模型
model = SentenceTransformer('google/embeddinggemma-300m')
# 定义损失函数
train_loss = losses.CosineSimilarityLoss(model)
# 微调模型
model.fit(
train_objectives=[(train_dataloader, train_loss)],
epochs=1,
warmup_steps=100
)某金融科技公司使用EmbeddingGemma构建了内部文档检索系统,实现了以下效果:
开源AI编程助手Roo Code使用EmbeddingGemma实现代码库索引和语义搜索:
EmbeddingGemma代表了设备端AI嵌入模型的重大突破。它成功地在模型大小、性能和功能性之间找到了理想的平衡点,为开发者提供了一个强大而灵活的工具来构建隐私保护、低延迟的AI应用。
核心优势总结:
| 欢迎光临 链载Ai (https://www.lianzai.com/) | Powered by Discuz! X3.5 |