链载Ai

标题: RAG(检索增强生成):提升大语言模型性能的终极指南 [打印本页]

作者: 链载Ai    时间: 1 小时前
标题: RAG(检索增强生成):提升大语言模型性能的终极指南

ingFang SC";font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">一、大语言模型的困境:从“鹦鹉学舌”到“知识饥渴”

ingFang SC";font-size: medium;font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;font-weight: 400;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">在人工智能领域,大语言模型(LLMs)的出现曾让我们惊叹于其语言能力——它们能流畅对话、撰写文章,甚至模仿人类的逻辑推理。然而,随着应用场景的深入,这些“超级智能鹦鹉”的局限性逐渐暴露:

ingFang SC";font-size: medium;font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;font-weight: 400;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">这些问题的核心,在于传统LLMs的知识更新依赖静态训练,无法动态获取外部信息。正如让一位渊博的历史学家评论最新社交媒体趋势,其知识体系的“时差”使其无法有效应对。为突破这一困境,检索增强生成(Retrieval-Augmented Generation,RAG)技术应运而生,成为连接LLMs与实时、私有知识的桥梁。

ingFang SC";font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">二、RAG的核心逻辑:给模型装上“动态知识库”

ingFang SC";font-size: medium;font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;font-weight: 400;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">RAG的本质,是将检索(Retrieval)与生成(Generation)相结合,让LLMs在回答问题时不再依赖“记忆”,而是通过实时检索外部知识库获取最新信息。其核心优势可类比为:

ingFang SC";font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">(一)RAG的三大应用场景

    ingFang SC";font-size: medium;font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;font-weight: 400;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;" class="list-paddingleft-1">
  1. 企业知识管理
    在大型企业中,海量知识分散在员工头脑、历史文件或内部系统中。当新问题出现时,传统方式需耗费大量时间查找资料,而RAG可作为“企业级大脑”:






欢迎光临 链载Ai (https://www.lianzai.com/) Powered by Discuz! X3.5