链载Ai

标题: 开源 LLM 监控工具和平台 [打印本页]

作者: 链载Ai    时间: 昨天 22:22
标题: 开源 LLM 监控工具和平台

人工智能正在改变世界,它取得重大进展的一个领域是生成模型,特别是在 GPT-3 和 Transformer 模型等大型语言模型 (LLM) 领域。然而,尽管这些模型令人印象深刻,但管理、监控和理解它们的行为和输出仍然是一个挑战。LLMOps 是一个专注于 LLM 管理和部署的新领域,其中一个关键方面是 LLM 可观察性。

什么是LLM可观察性?

LLM 可观察性(LLM Observability)是指从 LLM 的外部输出中理解、监控和推断其内部状态的能力。它涵盖多个领域,包括模型健康监控、性能跟踪、调试以及评估模型公平性和安全性。

在 LLMOps 的背景下,LLM 可观察性至关重要。LLM 很复杂,而且可能是不可预测的,产生的输出范围从无害到潜在有害或有偏见。因此,必须拥有正确的工具和方法来在训练、测试和部署后实时观察和理解这些模型的行为。

LLM 可观测性解决方案的预期功能

模型表现监控:可观测性解决方案应该能够实时跟踪和监控 LLM 的表现。这包括跟踪准确度、精确度、召回率和 F1 分数等指标,以及更具体的指标,例如语言模型中的困惑度或标记成本。

模型健康状况监控:解决方案应该能够监控模型的整体健康状况,识别模型行为中的异常或潜在问题模式并发出警报。

调试和错误跟踪:如果出现问题,解决方案应提供调试和错误跟踪功能,帮助开发人员识别、跟踪和修复问题。

公平性、偏见和安全性评估:考虑到人工智能中可能存在偏见和道德问题,任何可观测性解决方案都应包含评估公平性和安全性的功能,有助于确保模型的输出公正且符合道德规范。

可解释性:LLM通常可能是“黑匣子”,产生没有明确推理的输出。良好的可观察性解决方案应有助于使模型的决策过程更加透明,从而深入了解产生特定输出的原因。

与现有 LLMOps 工具集成:最后,该解决方案应该能够与现有 LLMOps 工具和工作流程集成,从模型开发和训练到部署和维护。

LLM 可观测性是生成 AI 的 LLMOps 的一个重要方面。它提供了有效管理、部署和维护大型语言模型所需的可见性控制,确保它们按预期执行、没有偏见并且使用安全

开源 LLM 监控工具和平台








欢迎光临 链载Ai (https://www.lianzai.com/) Powered by Discuz! X3.5