在越来越多的企业和组织中,AI 已经不再只是一个聊天机器人。
人们希望它能帮自己真正完成工作——查制度、看资料、分析财务、生成报表。
但现实中,我们往往发现:
文档归文档、数据库归数据库,
AI 能回答文字问题,却读不懂表格;
能搜索文件,却不会查业务数据。
这正是企业「AI 一体化平台」要解决的最大断层。
从技术角度看,AI 在企业中的两大核心应用场景其实是分裂的:
大模型本身很强大,但企业的知识和数据往往是分层存在的。只有当这两部分结合起来,AI 才能真正理解企业的「全貌」。
因此,AskTable 与其他 AI 平台(如BetterYeah、dify、RAGFlow等)形成了互补型生态:
知识库平台负责处理非结构化信息,如政策、制度、技术资料;
AskTable 负责处理结构化数据,如数据库、报表、业务指标。
两者结合,构成企业内部的统一智能体中枢。
在陕西师范大学内部,AI 被部署为“智慧校园助手”,
师生可以直接在系统内对话,例如:
“帮我查一下科研项目的立项情况。”
“我上个月的校园卡消费明细是多少?”
背后,其实是两种智能体的协作完成的:
知识类查询:由知识库 AI 平台提供的基于文档的模型处理;
数据类查询:由 AskTable 解析语义、生成 SQL、实时查询业务数据库。
AskTable 自动将结果以表格或图表返回,例如科研项目按类别分布、月度消费趋势等。这些过去需要人工导出 Excel、再分析的操作,现在几秒钟即可完成。
教师可以即时查看课题项目进展,学生也能查询消费账单与科研信息,人人都能直接“问数据”,不用再“找人取数”。
在某央企(大型基础设施企业)内部,AI 被集成到数字化管理系统中。
平台包含多个功能模块:
通用问答:面向员工的常识类问题,由大模型直接回答;
企业知识库:由知识库平台驱动,支持文件检索与制度问答;
业务查询:由AskTable负责最核心的业务数据访问。
项目经理只需一句话提问:
“某建筑的设计单位是谁”
“Y地下车库中,螺杆式低能热泵机组的厂家是谁”
AskTable 会自动解析语义、生成查询语句,并与知识库结果融合,
实现从「问知识」到「问数据」的自然衔接。
最终,业务方在一个统一界面中即可获取文档信息与数据库结果。
AskTable 成为知识库体系下的结构化数据大脑。
这种混合式架构的核心思想是:
“用户只对一个智能体说话,背后多个智能体协同完成任务。”
系统逻辑如下:
用户提问 → 主智能体判断问题类型;
若为知识类 → 调用 RAG 引擎;
若为数据类 → 调用 AskTable 查询数据库;
最后 → 统一将回答、表格、图表整合输出。
AI 对用户的身份识别与权限控制贯穿整个环节,既保持灵活扩展,又保证企业级安全可控。
因为企业的“知识”和“数据”从来就不在一个系统里。
一个只懂文字的 AI,不足以支撑决策;
一个只会查表的 AI,也无法回答制度和逻辑。
真正的智能体系统,必须让这两者融为一体。
AskTable 专注结构化数据的语义理解与访问:
自动识别业务语义、生成 SQL 查询;
支持多数据源(达梦、TDSQL、MySQL、PostgreSQL、SQLServer、StarRocks 等20 余种);
内置权限控制、字段映射、实体模糊匹配机制;
与任何知识库或智能体平台无缝集成。
它既可以作为一个独立的“数据分析助手”,
也可以作为知识库平台的“结构化智能引擎”接入,
与BetterYeah、Dify、RAGFlow等平台共同构建完整的企业智能体生态。
让 AI 不仅能查文档,还能查数据库、分析业务、生成决策,
这才是企业智能化的真正落地路径。
AskTable 与知识库平台的结合,
正是让 AI 从「问知识」走向「问数据」的关键一步。
| 欢迎光临 链载Ai (https://www.lianzai.com/) | Powered by Discuz! X3.5 |