链载Ai

标题: 大模型推理框架vLLM源码解析 [打印本页]

作者: 链载Ai    时间: 7 小时前
标题: 大模型推理框架vLLM源码解析

大家好,这段时间精读了一下vLLM源码实现,打算开个系列来介绍它的源码,也把它当作我的总结和学习笔记。

整个vLLM代码读下来,给我最深的感觉就是:代码呈现上非常干净历练,但是逻辑比较复杂,环环嵌套,毕竟它是一个耦合了工程调度和模型架构改进的巨大工程。

所以在源码解读的第一篇,我想先写一下对整个代码架构的介绍。在本篇中,我特意少涉及对源码本身的解读,而是把源码中的信息总结出来,配合图例先做整体介绍。如果你不想阅读源码细节,但又想对vLLM代码有整体把握,方便后续能知道从哪里查bug的话,这篇文章或许可以帮到你。如果你后续想更深入阅读源码的话,这篇文章可以作为一个引子,后续的细节解读都将在本文的基础上扩展开。

阅读本文前,建议先看vLLM原理篇讲解。

话不说,进入正文吧~

【如果本文有帮助,欢迎大家点赞、收藏和在看~】

一、调用vLLM的两种方式

根据vLLM的官方文档,它向用户提供了两种调用它的方法,分别是:

在代码实现上,vLLM首先实现了一个推理内核引擎(LLMEngine),在此基础上封装了上述两种调用方法。在本系列的讲解中,我们会先以“offline bacthed inference”作为入口,详细解说内核引擎LLMEngine的各块细节。在此基础上我们再来看“online serving”的运作流程。

现在,让我们来看这两种调用方法的具体例子。

1.1 Offline Batched Inference

fromvllmimportLLM,SamplingParams

#===========================================================================
#batchprompts
#===========================================================================
prompts=["Hello,mynameis",
"ThepresidentoftheUnitedStatesis",
"ThecapitalofFranceis",
"ThefutureofAIis",]

#===========================================================================
#采样参数
#===========================================================================
sampling_params=SamplingParams(temperature=0.8,top_p=0.95)

#===========================================================================
#初始化vLLMofflinebatchedinference实例,并加载指定模型
#===========================================================================
llm=LLM(model="facebook/opt-125m")

#===========================================================================
#推理
#===========================================================================
outputs=llm.generate(prompts,sampling_params)

#===========================================================================
#对每一条prompt,打印其推理结果
#===========================================================================
foroutputinoutputs:
prompt=output.prompt
generated_text=output.outputs[0].text
print(f"rompt:{prompt!r},Generatedtext:{generated_text!r}")

在传统离线批处理中,我们每次给模型发送推理请求时,都要:

这种“团体间等成员到齐,再一起行动”的行为,就被称为“同步”。

在vLLM中,当我们使用离线批处理模式时,表面上是在做“同步”推理,也即batch_size是静态固定的。但推理内核引擎(LLMEngine)在实际运作时,batch_size是可以动态变更的:在每一个推理阶段(prefill算1个推理阶段,每个decode各算1个推理阶段)处理的batch size可以根据当下显存的实际使用情况而变动。

举个例子来说:

以上是一个浅显粗暴的例子,目的是帮助大家理解“在vLLM中,即使是同步形式的离线批处理,其背后的内核引擎也是按动态batch的形式来实现的”,实际的调度策略(Scheduler)要更加复杂,我们将在后续的解读中来具体看它。

也正是因为LLMEngine这种“动态处理”的特性,才使得它同时也能成为异步在线服务的内核引擎:当一条条请求发来时,它们都先进入LLMEngine调度器(Scheduler)的waiting队列中(实际并不是直接进入waiting队列中的,而是在传给LLMEngine前先进入asyncio.Queue()中,然后再由LLMEngine调度进waiting队列中的,这些细节我们也放在后面说,这里不影响理解就行)。此时模型正常执行它的1个推理阶段,调度器也正常处理新来的请求。当模型准备执行下1个推理阶段时,调度器再根据设定的策略,决定哪些数据可以进入running队列进行推理。由于在线服务是异步的,先推理完成的数据就可以先发给客户端了(如果采用流式传输,也可以生成多少先发多少)。

在这个过程中,vLLM通过PagedAttention技术和“先来先服务(FCFS),后来先抢占,gpu不够就先swap到cpu上”的调度策略,在1个推理阶段处理尽可能多的请求,解决高并发场景下的推理吞吐问题。这就是整个vLLM运作的核心思想。(对这行黑体字里的术语有疑惑的朋友,建议先看vLLM原理篇讲解)

1.2 API Server For Online Serving

#===========================================================================
# Server:起服务
#===========================================================================
$python-mvllm.entrypoints.openai.api_server--modelmeta-llama/Llama-2-7b-hf

#===========================================================================
# Client:发请求(OpenAI API)
#===========================================================================
$curlhttp://localhost:8000/v1/completions\
-H"Content-Type:application/json"\
-d'{
"model":"meta-llama/Llama-2-7b-hf",
"prompt":"SanFranciscoisa",
"max_tokens":7,
"temperature":0
}'

vLLM在实现在线服务时,采用uvicorn部署fastapi app实例,以此实现异步的请求处理。而核心处理逻辑封装在AsyncLLMEngine类中(它继承自LLMEngine)。所以,只要我们搞懂了LLMEngine,对vLLM的这两种调用方式就能举一反三了。

1.3 总结

vLLM的两种调用方式与内核引擎LLMEngine的关系如下(图片来自vLLM团队2023 first meetup PPT):

图中左侧是用户使用界面,罗列了上述所说的两种调用方式(注意,如前文所说,做demo用的api server官方已经不再维护了,openai_api_server才是官方推荐的使用方式,user custom server目前还没有实现)。右侧则是开发者界面,不难发现LLMEngine是vLLM的核心逻辑。

我们来看开发者界面下的几个函数,先来看LLMEngine:

AsyncLLMEngine下的函数也是同理类推,这里不赘述了。

从上面的解读你可能发现了,其实只要掌握了add_request()step()这两个函数,就等于掌握LLMEngine的全部思想了!于是你兴奋地打开这两个函数,发现它们的实现代码只有十几行,你突然感觉自己好像是去项羽那吃席的刘邦,因为你渐渐发现:

背后有万行代码逻辑正在等你?

所以说,vLLM真得是一个巨大的工程,它耦合了调度工程和模型本身的改造,代码中的嵌套非常复杂。所以在代码解读的第一篇,我们得先理清整个代码架构,然后再逐一攻克细节。

二、vLLM代码整体架构

LLMEngine可以具体分成两个部分:

2.1 Centralized Controller

Centralized Controller,也就是前文我们所说的调度器。它和LLMEngine所在的进程是同一个,且两者都是在CPU上的。

2.2 Distributed Workers

Distributed Workers,也就是分布式系统,你可以将每个worker理解成一块gpu。它的作用是将我们要使用的模型load到各块卡上(目前对单卡装不下的模型,vLLM支持tp/pp推理),然后对Controller传来的数据做1次推理,返回相关结果。我们来细看下这块:


三、加载模型与预分配显存

现在你已经从代码层面知道vLLM的整体架构了,你是不是迫不及待想看看:当一条请求过来时,整个vLLM是怎么运作的呢?现在,我们就来解析这个流程。

在vLLM正式开始处理1条请求(也就是LLMEngine的调度器正式开始运作时),它需要做两件和初始化相关的事:

我们分别来看这两个步骤。

3.1 加载模型

这里在做的事很直观:把你的base model加载到worker上。如果你是online加载的,vLLM默认使用HuggingFace,你也可以在环境变量中把相关配置改成ModelScope。

3.2 预分配显存

欸这个就非常有意思了。在模型部署的初始化阶段(推理正式开始前),vLLM会通过模拟实验的方式,来决定gpu/cpu上到底有多少个KV cache物理块可以分配给后续的请求们做推理。vLLM管这个步骤叫profile_num_available_blocks。我们来看看这个模拟实验是怎么做的:

(1)杜撰假数据

首先,用户在初始化LLMEngine引擎时,会提供两个重要参数:

根据这两个参数,我们可以假设在模型推理中,平均一个seq要处理max_num_batched_tokens // max_num_seqs个token,余数部分我们默认放在第一个seq中。例如,假设max_num_batched_tokens=10,max_num_seqs = 3,那么我们就能杜撰出3条seq,每个seq的长度分别为4,3,3

(2)用假数据模拟一次前向推理

我们现在想知道在1次推理过程中,可以分配多少的显存给KV cache。我们可以使用如下公式计算:

分配给KV cache显存 = gpu总显存 - 不使用KV cache情况下做1次FWD时的显存占用(包括模型本身和FWD过程中的中间数据)

对于“不使用KV cache做1次FWD时的显存占用”,我们就可以用杜撰出来的假数据模拟一次FWD来计算得出。在前向推理之后,我们把gpu上的缓存清一次,让它不要影响后续模型的正常推理。

(3)计算可分配的KV cache物理块总数

从(2)的模拟实验中,我们已经预估了一块卡上“分配给KV Cache的总显存”。现在,我们可以来计算总的物理块数量了。

我们易知:总物理块数量 = 分配给KV Cache的显存大小/ 物理块大小,其中“大小”的单位是bytes。

物理块大小(block_size)也是可以由用户自定义的,vLLM推荐的默认值是block_size = 16。

由大模型中KV值的定义,我们易知:K_cache_block_size = block_size * num_heads * head_size * num_layers * dtype_size其中dtype_size表示精度对应的大小,例如fp16就是2,fp32就是4

同理可知:V_cache_block_size = K_cache_block_size

则最终一个物理块的大小为:

cache_block_size = block_size * num_heads * head_size * num_layers * dtype_size * 2

知道了物理块的大小,我们就能求出物理块的总数了。

CPU上物理块总数也是同理,但与GPU不同的是,它不需要做模拟实验。CPU上可用的内存总数是用户通过参数传进来的(默认是4G)。也就是我们认为只能在这4G的空间上做swap。将上面公式中“分配给KV Cache的显存大小”替换成4G,就能得到CPU上物理块的数量。

(4)将预分配的KV Cache加载到gpu上


当我们确定好KV Cache block的大小后,我们就可以创建empty tensor,将其先放置到gpu上,实现显存的预分配。以后这块显存就是专门用来做KV Cache的了。也正是因为这种预分配,你可能会发现在vLLM初始化后,显存的占用比你预想地要多(高过模型大小),这就是预分配起的作用。相关代码如下(帮助大家更好看一下KV cache tensor的shape):

def_allocate_kv_cache(
self,
num_blocks:int,
device:str,
)->List[torch.Tensor]:
"""AllocatesKVcacheonthespecifieddevice."""
kv_cache_shape=self.attn_backend.get_kv_cache_shape(
num_blocks,self.block_size,self.num_heads,self.head_size)
pin_memory=is_pin_memory_available()ifdevice=="cpu"elseFalse
kv_cacheist[torch.Tensor]=[]
#=======================================================================
#kv_cache_shape2,num_blocks,block_size*num_kv_heads*head_size)
#=======================================================================
for_inrange(self.num_layers):
kv_cache.append(
torch.empty(kv_cache_shape,
dtype=self.dtype,
pin_memory=pin_memory,
device=device))
returnkv_cache

由于这篇文章的主要目的是帮大家了解vLLM代码框架,所以关于预分配的详细代码(注释版)的讲解,我们放在后面的系列中说。这篇文章会尽量少放代码。

整个预分配的过程,其实也是在提醒我们:当你发现vLLM推理吞吐量可能不及预期,或者出现难以解释的bug时,可以先查查输出日志中pending(waiting)/running/swapped的序列数量,以及此时KV Cache部分的显存利用程度,尝试分析下这些默认的预分配设置是不是很好契合你的推理场景,如果不行,可以先尝试调整这些参数进行解决。

四、Scheduler调度

好,目前为止,vLLM所有初始化的工作都完成了,我们现在可以来处理一条请求了。这就是我们调度器发挥作用的时候了,整个调度过程如下:

具体的内容我们在前文说了很多了。这里只提一点:你会发现这出现了叫swapped的队列,这是前文没有提过的。

如果你读过vLLM的原理篇,你可能记得vLLM的调度策略中有一项叫做:后来先抢占(Preemption)。它是指在准备执行当前这1个推理阶段时,如果gpu上没有足够的资源对running队列中的全部数据完成下1次推理,我们就取出running队列中最后来的数据,将它的KV Cache swapped到CPU上,同时将这个数据从running移到swapped中。我们重复执行这个步骤,直到当前gpu上有足够的KV Cache空间留给剩在running中的全部数据为止。

而存放在Swapped队列中的数据,也会在后续gpu上有足够空间时,被重新加入running计算。

详细的调度策略会更精细复杂,我们放在对Scheduler单独的代码解析中来说。

关于vLLM整体代码架构,我们就介绍到这了。对于这个精妙而复杂的系统,我们还有很多细节可以探索。在本系列后续的文章中,我们将来仔细研究这些细节。






欢迎光临 链载Ai (https://www.lianzai.com/) Powered by Discuz! X3.5