add_conditional_edges函数添加带条件的边。ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 1.2em;font-weight: bold;display: table;margin: 2em auto 1em;padding-right: 1em;padding-left: 1em;border-bottom: 2px solid rgb(15, 76, 129);color: rgb(63, 63, 63);">1. 完整代码及运行ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;margin: 1.5em 8px;letter-spacing: 0.1em;color: rgb(63, 63, 63);">废话不多说,先上完整代码,和运行结果。先跑起来看看效果再说。ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;overflow-x: auto;border-radius: 8px;padding: 1em;margin: 10px 8px;">fromlangchain_openaiimportChatOpenAI
fromlangchain_core.messagesimportHumanMessage,BaseMessage
fromlanggraph.graphimportEND,MessageGraph
importjson
fromlangchain_core.messagesimportToolMessage
fromlangchain_core.toolsimporttool
fromlangchain_core.utils.function_callingimportconvert_to_openai_tool
fromtypingimportList
@tool
defmultiply(first_number:int,second_number:int):
"""Multipliestwonumberstogether."""
returnfirst_number*second_number
model=ChatOpenAI(temperature=0)
model_with_tools=model.bind(tools=[convert_to_openai_tool(multiply)])
graph=MessageGraph()
definvoke_model(state
ist[BaseMessage]):
returnmodel_with_tools.invoke(state)
graph.add_node("oracle",invoke_model)
definvoke_tool(state
ist[BaseMessage]):
tool_calls=state[-1].additional_kwargs.get("tool_calls",[])
multiply_call=None
fortool_callintool_calls:
iftool_call.get("function").get("name")=="multiply":
multiply_call=tool_call
ifmultiply_callisNone:
raiseException("Noadderinputfound.")
res=multiply.invoke(
json.loads(multiply_call.get("function").get("arguments"))
)
returnToolMessage(
tool_call_id=multiply_call.get("id"),
content=res
)
graph.add_node("multiply",invoke_tool)
graph.add_edge("multiply",END)
graph.set_entry_point("oracle")
defrouter(state
ist[BaseMessage]):
tool_calls=state[-1].additional_kwargs.get("tool_calls",[])
iflen(tool_calls):
return"multiply"
else:
return"end"
graph.add_conditional_edges("oracle",router,{
"multiply":"multiply",
"end":END,
})
runnable=graph.compile()
response=runnable.invoke(HumanMessage("Whatis123*456?"))
print(response)ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;margin: 1.5em 8px;letter-spacing: 0.1em;color: rgb(63, 63, 63);">运行结果如下:add_conditional_edges来对边进行条件添加。这部分代码如下:graph.add_conditional_edges("oracle",router,{
"multiply":"multiply",
"end":END,
})add_conditional_edges接收三个参数:
•第一个为这条边的第一个node的名称
•第二个为这条边的条件
•第三个为条件返回结果的映射(根据条件结果映射到相应的node)
如上面的代码,意思就是往 “oracle” node上添加边,这个node有两条边,一条是往“multiply” node上走,一条是往“END”上走。怎么决定往哪个方向去:条件是 router(后面解释),如果 router 返回的是“multiply”,则往“multiply”方向走,如果 router 返回的是 “end”,则走“END”。
来看下这个函数的源码:
defadd_conditional_edges(
self,
start_key:str,
condition:Callable[...,str],
conditional_edge_mapping:Optional[Dict[str,str]]=None,
)->None:
ifself.compiled:
logger.warning(
"Addinganedgetoagraphthathasalreadybeencompiled.Thiswill"
"notbereflectedinthecompiledgraph."
)
ifstart_keynotinself.nodes:
raiseValueError(f"Needtoadd_node`{start_key}`first")
ifiscoroutinefunction(condition):
raiseValueError("Conditioncannotbeacoroutinefunction")
ifconditional_edge_mappingandset(
conditional_edge_mapping.values()
).difference([END]).difference(self.nodes):
raiseValueError(
f"Missingnodeswhichareinconditionaledgemapping.Mapping"
f"containspossibledestinations:"
f"{list(conditional_edge_mapping.values())}.Possiblenodesare"
f"{list(self.nodes.keys())}."
)
self.branches[start_key].append(Branch(condition,conditional_edge_mapping))重点是这一句:self.branches[start_key].append(Branch(condition, conditional_edge_mapping)),给当前node添加分支Branch。
条件代码如下:判断执行结果中是否有 tool_calls 参数,如果有,则返回"multiply",没有,则返回“end”。
defrouter(state
ist[BaseMessage]):
tool_calls=state[-1].additional_kwargs.get("tool_calls",[])
iflen(tool_calls):
return"multiply"
else:
return"end"(1)起始node:oracle
@tool
defmultiply(first_number:int,second_number:int):
"""Multipliestwonumberstogether."""
returnfirst_number*second_number
model=ChatOpenAI(temperature=0)
model_with_tools=model.bind(tools=[convert_to_openai_tool(multiply)])
graph=MessageGraph()
definvoke_model(state
ist[BaseMessage]):
returnmodel_with_tools.invoke(state)
graph.add_node("oracle",invoke_model)这个node是一个带有Tools 的 ChatOpenAI。在LangChain中使用Tools的详细教程请看这篇文章:【AI大模型应用开发】【LangChain系列】5. LangChain入门:智能体Agents模块的实战详解。简单解释就是:这个node的执行结果,将返回是否应该使用绑定的Tools。
(2)multiply
definvoke_tool(state
ist[BaseMessage]):
tool_calls=state[-1].additional_kwargs.get("tool_calls",[])
multiply_call=None
fortool_callintool_calls:
iftool_call.get("function").get("name")=="multiply":
multiply_call=tool_call
ifmultiply_callisNone:
raiseException("Noadderinputfound.")
res=multiply.invoke(
json.loads(multiply_call.get("function").get("arguments"))
)
returnToolMessage(
tool_call_id=multiply_call.get("id"),
content=res
)
graph.add_node("multiply",invoke_tool)这个node的作用就是执行Tools。
| 欢迎光临 链载Ai (https://www.lianzai.com/) | Powered by Discuz! X3.5 |