链载Ai

标题: 使用RAG-GPT集成智谱AI、DeepSeek快速搭建OpenAI Cookbook智能客服 [打印本页]

作者: 链载Ai    时间: 4 小时前
标题: 使用RAG-GPT集成智谱AI、DeepSeek快速搭建OpenAI Cookbook智能客服

引言

前面介绍了使用RAG-GPT和OpenAI快速搭建LangChain官网智能客服,目前国内也有一些比较不错的云端大模型API服务。本文将介绍通过RAG-GPT集成智谱AI和DeepSeek,快速搭建OpenAI Cookbook智能客服。

RAG技术原理介绍

在介绍RAG-GPT项目之前,我们首先要理解RAG的基本原理,RAG在问答系统中的一个典型应用主要包括三个模块,分别是:

智能文档的在线检索流程可以用一张图说明,上图中展示了一个完整的问答流程:

以上是对RAG技术的基本介绍,如果想深入了解技术细节可以参考这篇文章:RAG技术全解析:打造下一代智能问答系统。

如何快速实现RAG的智能问答系统?

从RAG的原理介绍中可以看到要实现RAG整套架构还是存在一定工作量,需要构建索引、检索、集成LLM、Prompt优化等一系列模块,具有一定的难度。

基于此,RAG-GPT提供了一整套开源解决方案,旨在利用LLM和RAG技术快速搭建一个全功能的客服解决方案。该项目基于Flask框架,包括前端用户界面、后端服务和管理员控制台,为企业利用LLM搭建智能客服等对话场景提供了一个完整的自动化解决方案,可以帮助开发者快速搭建一个智能问答系统,且代码完全开源。

项目地址:https://github.com/open-kf/rag-gpt

RAG-GPT的基本架构

RAG-GPT关键特性:

从特性可以知道,RAG相比一些商业收费的基于知识库的问答系统优势在于:

RAG-GPT 快速搭建智能问答系统

RAG-GPT的基本组成分为三部分:- 智能问答后端服务- 管理后台系统- 用户使用的ChatBot UI。

下面,将介绍如何启动RAG-GPT项目和使用这三个模块,将RAG-GPT集成到你的网站只需要5个步骤:

1. 下载源代码,通过Git克隆RAG-GPT的GitHub仓库:
gitclonehttps://github.com/open-kf/rag-gpt.git&&cdrag-gpt
2.配置环境变量

在启动RAG-GPT服务之前,需要修改相关配置,以便程序正确初始化。

如果使用智谱AI作为LLM底座

cpenv_of_zhipuai.env

.env 文件中的变量

LLM_NAME="ZhipuAI"
ZHIPUAI_API_KEY="xxxx"
GLM_MODEL_NAME="glm-3-turbo"
MIN_RELEVANCE_SCORE=0.3
BOT_TOPIC="xxxx"
URL_PREFIX="http://127.0.0.1:7000/"
USE_PREPROCESS_QUERY=0
USE_RERANKING=1
USE_DEBUG=0

对 .env 中的变量做以下调整:

如果使用DeepSeek作为LLM底座

[!NOTE]

DeepSeek没有提供Embedding API,这里使用ZhipuAI的Embedding API。

我们需要同时准备ZHIPUAI_API_KEYDEEPSEEK_API_KEY

cpenv_of_deepseek.env

.env 文件中的变量

LLM_NAME="DeepSeek"
ZHIPUAI_API_KEY="xxxx"
DEEPSEEK_API_KEY="xxxx"
DEEPSEEK_MODEL_NAME="deepseek-chat"
MIN_RELEVANCE_SCORE=0.3
BOT_TOPIC="xxxx"
URL_PREFIX="http://127.0.0.1:7000/"
USE_PREPROCESS_QUERY=0
USE_RERANKING=1
USE_DEBUG=0

对 .env 中的变量做以下调整:

3.执行启动命令

分别执行以下命令,即可启动。

[!NOTE]

请使用 Python 3.10.x 或以上版本。

先安装python依赖项

python3-mvenvmyenv
sourcemyenv/bin/activate
pipinstall-rrequirements.txt

启动项目即可:

python create_sqlite_db.py
python rag_gpt_app.py

或者执行

shstart.sh

4.快速体验聊天效果

首先要登录到管理后台,浏览器输入:http://127.0.0.1:7000/open-kf-admin/登录账号为:admin密码 :open_kf_AIGC@2024.

在管理后台切换到Sourcetab,输入想要抓取的OpenAI Cookbook的网页地址列表:

https://cookbook.openai.com/
https://cookbook.openai.com/examples/gpt4o/introduction_to_gpt4o
https://cookbook.openai.com/examples/batch_processing
https://cookbook.openai.com/examples/assistants_api_overview_python
https://cookbook.openai.com/examples/gpt_with_vision_for_video_understanding
https://cookbook.openai.com/examples/multimodal/using_gpt4_vision_with_function_calling
https://cookbook.openai.com/examples/creating_slides_with_assistants_api_and_dall-e3
https://cookbook.openai.com/examples/parse_pdf_docs_for_rag
https://cookbook.openai.com/examples/custom_image_embedding_search
https://cookbook.openai.com/examples/evaluation/evaluate_rag_with_llamaindex

点击Submit即可一键爬取上面网页的内容作为知识库。

获取网站的所有网页URL后,此时网页URL展示的状态是Recorded。服务端会通过一个异步任务处理网页内容抓取,并且计算Embedding,然后存入向量数据库。

服务端处理完后,可以看到爬取网页URL的日志。

在admin页面,在管理后台上所有网页URL展示的状态都是Trained

浏览器打开http://127.0.0.1:7000/open-kf-chatbot/,就可以访问Bot了。

5.一键嵌入到网站

RAG-GPT提供了将聊天机器人嵌入到网站的方法,使得用户可以直接在网站上使用智能问答服务。打开管理后台菜单切换到embed,复制两个代码即可实现一键嵌入,这两个代码片效果分别如下:一个是iframe嵌入一个聊天窗口,一个是在页面右下角点击弹出聊天窗口。可以新建一个文本文件,将代码复制进去,用浏览器打开就可以看到嵌入效果了。

6.管理后台其他功能

可以按照时间、用户查询聊天记录和修改问答对的答案以更符合自身需求。

用户可以定制化聊天对话框的风格,使其更符合自身网站的风格特性。

结语

RAG-GPT项目具备开源免费、易于部署集成、开箱即用和功能丰富的特点,为LLM大模型在特定领域的应用落地提供了一套企业级的解决方案。RAG-GPT已经支持本地文件知识库,集成国内LLM大模型等特性,使得RAG-GPT满足更多样化的需求。

关于我们

OpenIM是领先的开源即时通讯(IM)平台,目前在GitHub上的星标已超过13k。随着数据和隐私安全的重视以及信息技术的快速发展,政府和企业对于私有部署的IM需求急剧增长。OpenIM凭借“安全可控”的特点,在协同办公软件市场中占据了一席之地。在后AIGC时代,IM作为人机交互的首要接口,其价值愈发重要,OpenIM期待在此时代扮演更关键的角色。

基于这样的视角,我们最近开源了RAG-GPT项目,已被部分企业采用并持续完善中。如果您对RAG-GPT感兴趣,可以访问以下链接了解更多信息:

项目地址:https://github.com/open-kf/rag-gpt

在线Demo:https://demo.rentsoft.cn/

我们的目标是改进文件管理功能,更有效地管理数据,并整合企业级知识库。欢迎大家在GitHub上Star并关注,支持我们的开源旅程。

开源说明:RAG-GPT采用Apache 2.0许可,支持免费使用和二次开发。遇到问题时,请在GitHub提Issue或加入我们的OpenKF开源社区群讨论。







欢迎光临 链载Ai (https://www.lianzai.com/) Powered by Discuz! X3.5