链载Ai

标题: FlashRag开源框架:汇聚十几种顶尖RAG算法,灵活组装pipeline,一站式RAG解决方案 [打印本页]

作者: 链载Ai    时间: 3 小时前
标题: FlashRag开源框架:汇聚十几种顶尖RAG算法,灵活组装pipeline,一站式RAG解决方案

FlashRAG 是一个用于再现和开发检索增强生成 (RAG) 研究的 Python 工具包。工具包包括 32 个预处理的基准 RAG 数据集和 12 个最先进的 RAG 算法。

https://github.com/RUC-NLPIR/FlashRAG
https://arxiv.org/html/2405.13576v1

框架特点

内置的先进的RAG算法及评测效果表:

MethodTypeNQ (EM)TriviaQA (EM)Hotpotqa (F1)2Wiki (F1)PopQA (F1)WebQA(EM)Specific setting
Naive GenerationSequential22.655.728.433.921.718.8
Standard RAGSequential35.158.935.321.036.715.7
AAR-contriever-kiltSequential30.156.833.419.836.116.1
LongLLMLinguaSequential32.259.237.525.038.717.5Compress Ratio=0.5
RECOMP-abstractiveSequential33.156.437.532.439.920.2
Selective-ContextSequential30.555.634.418.533.517.3Compress Ratio=0.5
Ret-RobustSequential42.968.235.843.457.233.7Use LLAMA2-13B with trained lora
SuReBranching37.153.233.420.648.124.2Use provided prompt
REPLUGBranching28.957.731.221.127.820.2
SKRConditional25.555.929.828.524.518.6Use infernece-time training data
Self-RAGLoop36.438.229.625.132.721.9Use trained selfrag-llama2-7B
FLARELoop22.555.828.033.920.720.2
Iter-Retgen, ITRGLoop36.860.138.321.637.918.2









欢迎光临 链载Ai (https://www.lianzai.com/) Powered by Discuz! X3.5