链载Ai

标题: 【回顾】Meta 开源的代码大模型 [打印本页]

作者: 链载Ai    时间: 2 小时前
标题: 【回顾】Meta 开源的代码大模型

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-weight: bold;margin: 2em 8px 0.5em;color: rgb(15, 76, 129);">背景介绍

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 15px;margin: 1.5em 8px;letter-spacing: 0.1em;color: rgb(63, 63, 63);">在日常编程过程中,我们总会遇到诸多编程问题。微小的问题我们可以轻松解决,但对于大型的编程项目和复杂的问题,手动编程效率低且容易出错。同时,对于超大型输入的处理和编程任务的 zero-shot 指令跟踪,我们也总是力不从心。如果你正在寻找支持大型输入内容、具备编程任务 zero-shot 指令跟踪能力的模型,那么 Code Llama 是你的理想选择。

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 15px;margin: 1.5em 8px;letter-spacing: 0.1em;color: rgb(63, 63, 63);">今天要给大家推荐一个 GitHub 开源项目 facebookresearch/codellama,该项目在 GitHub 有超过 11.4k Star,用一句话介绍该项目就是:“Inference code for CodeLlama models”。

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 15px;margin: 1.5em 8px;color: rgb(63, 63, 63);">ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;border-radius: 4px;display: block;margin: 0.1em auto 0.5em;" title="null"/>

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-weight: bold;margin: 2em 8px 0.5em;color: rgb(15, 76, 129);">项目介绍

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 15px;margin: 1.5em 8px;letter-spacing: 0.1em;color: rgb(63, 63, 63);">Code Llama 是一种基于Llama 2的大型编程语言模型集合,具备开源模型中的最佳性能,支持填充能力,支持大型输入内容,还可以用于编程任务的 zero-shot 指令。Code Llama 提供包括一般模型(Code Llama),Python 专用模型(Code Llama - Python),和指令跟踪模型(Code Llama - Instruct)在内的多种版本,并且各个版本的参数量分别达到了 7B、13B 和 34B。所有的模型都是在 16k 的令牌序列上进行训练的,并对多达 100k 令牌的输入内容都有改进。7B 和 13B 的 Code Llama 以及 Code Llama - Instruct 支持基于周围内容的填充。

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 15px;margin: 1.5em 8px;color: rgb(63, 63, 63);">ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;border-radius: 4px;display: block;margin: 0.1em auto 0.5em;" title="null"/>

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-weight: bold;margin: 2em 8px 0.5em;color: rgb(15, 76, 129);">如何使用

要使用 Code Llama,首先需要下载该模型的权重和标记器。下载的方式是访问Meta website,并接受其许可证。

在获得了权重和标记器之后,你需要有能够支持 PyTorch / CUDA 的 conda 环境,并在父目录下运行此命令安装:

pipinstall-e.

然后,我们可以根据我们的硬件和用途,设置max_seq_lenmax_batch_size的值,使用这个命令就可以调用预训练特定语言模型:

torchrun--nproc_per_node1example_completion.py\
--ckpt_dirCodeLlama-7b/\
--tokenizer_pathCodeLlama-7b/tokenizer.model\
--max_seq_len128--max_batch_size4

对于代码填充,CodeLlama-7b模型可以运行填充的命令如下:

torchrun--nproc_per_node1example_infilling.py\
--ckpt_dirCodeLlama-7b/\
--tokenizer_pathCodeLlama-7b/tokenizer.model\
--max_seq_len192--max_batch_size4

项目推介

Code Llama 是 Facebook Research 团队的项目,拥有包括Code LlamaCode Llama - Python、和Code Llama - Instruct三大类,7B 到 34B 参数的大规模模型,涵盖了代码生成、Python 专用以及指令追踪等多个应用场景。Code Llama 的优良表现也已经被我们的许多使用者所证实,除此之外,以上模型还得到了许多广大研究社区和业界的一致好评。

以下是该项目 Star 趋势图(代表项目的活跃程度):






欢迎光临 链载Ai (https://www.lianzai.com/) Powered by Discuz! X3.5