https://github.com/AIDajiangtang/LLM-from-scratch/blob/main/Bert_fine_tune_from_scratch.ipynb
['bert_config.json','bert_model.ckpt.data-00000-of-00001','bert_model.ckpt.index','vocab.txt']
自然语言推理任务通常是判断两个句子之间的逻辑关系(如蕴涵、矛盾或中立)。
ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.578px;text-wrap: wrap;"/>
Next Sentence Prediction (NSP)可以看作是一种特殊的自然语言推理任务。
1.训练数据
本次微调用的数据来自GLUE MRPC,数据由成对的句子构成,并且还有一个人工标注的标签,表示两个句子是否语义相似。
FeaturesDict({'idx':int32,'label':ClassLabel(shape=(),dtype=int64,num_classes=2),'sentence1':Text(shape=(),dtype=string),'sentence2':Text(shape=(),dtype=string),})下面打印一条数据。
idx:1680label:0sentence1:b'Theidenticalroverswillactasroboticgeologists,searchingforevidenceofpastwater.'sentence2:b'Theroversactasroboticgeologists,movingonsixwheels.'
对于每个样本中的句子对,拼接成一个输入序列,格式为:[CLS] 句子A [SEP] 句子B [SEP]。
使用BERT的分词器将输入序列分词,并将其转换为输入ID、注意力掩码和类型ID。
词表参数:{'vocab_size':30522,'start_of_sequence_id':101,'end_of_segment_id':102,'padding_id':0,'mask_id':103}设置batch_size=32,max_seq_length = 128。
则输入ID:
模型的输入X。
'input_word_ids':<tf.Tensor:shape=(32,128),dtype=int32,numpy=array([[101,1996,7235,...,0,0,0],[101,2625,2084,...,0,0,0],[101,6804,1011,...,0,0,0],...,[101,2021,2049,...,0,0,0],[101,2274,2062,...,0,0,0],[101,2043,1037,...,0,0,0]],dtype=int32)>
注意力掩码:
注意力掩码用于区分实际的 token 和填充的 token,1表示实际的 token,0表示填充的 token。
在多头注意力计算时,注意力掩码会将填充位置对应的注意力权重设置为负无穷(通常是一个非常大的负数,如 -10^9),这样在通过 softmax 计算时,这些位置的权重就会接近于零,从而使这些填充位置不会对注意力分数产生影响。
在计算损失时,通常会忽略填充位置对应的 token。
'input_mask':<tf.Tensor:shape=(32,128),dtype=int32,numpy=array([[1,1,1,...,0,0,0],[1,1,1,...,0,0,0],[1,1,1,...,0,0,0],...,[1,1,1,...,0,0,0],[1,1,1,...,0,0,0],[1,1,1,...,0,0,0]],dtype=int32)>,
类型ID:
表示token属于哪个句子,0表示属于句子A,1表示数据句子B。
'input_type_ids':<tf.Tensor:shape=(32,128),dtype=int32,numpy=array([[0,0,0,...,0,0,0],[0,0,0,...,0,0,0],[0,0,0,...,0,0,0],...,[0,0,0,...,0,0,0],[0,0,0,...,0,0,0],[0,0,0,...,0,0,0]],dtype=int32)>
在将token id转换成词嵌入向量时,会将类型id视为segment Embedding。
标签:
['not_equivalent', 'equivalent']->[0,1]
0:表示两个句子语义不相似。
1:表示两个句子语义相似。
<tf.Tensor:shape=(32,),dtype=int64,numpy=array([0,0,1,1,0,0,1,1,1,1,1,1,0,1,1,0,1,1,1,0,1,1,1,1,1,1,1,0,0,1,0,1])>
到此,我们就构造了模型输入和标签。
input_word_idsshape32,128)input_maskshape
32,128)input_type_idsshape
32,128)labelsshape
32,)
2.模型
在模型架构上,相对于BERT预训练,在微调过程中,会在模型的输出层添加一个分类层。这个分类层的输入是[CLS]标记对应的隐藏状态,其输出是表示类别概率的logits。
因为EMB_SIZE =768,所以分类层的输入(32, 768),输出(32, 768,2)。
3.微调
超参数EMB_SIZE=768//词嵌入维度HIDDEN_SIZE=768BATCH_SIZE=32#batchsizeNUM_HEADS=4//头的个数
最后将三个embedding相加,然后将输出的embedding[32,128,768]输入到编码器中。
3.2.多头注意力
编码器的第一个操作是多头注意力,与Transformer和GPT中不同的是,不计算[PAD]的注意力,会将[PAD]对应位置的注意力分数设置为一个非常小的值,使之经过softmax后为0。
多头注意力的输出维度[32,128,768]。
3.3.MLP
与Transformer和GPT中的一致,MLP的输出维度[32,128,768]。
3.4.输出
编码器的输出[32,128,768],但我们只需要[CLS]对应的输出[32,768]。
二分类损失
通过另一个线性层[768,2]将开头的[CLS]的输出[32,768]映射成[32,2],表示属于正负类的概率,然后与标签[32,]计算交叉熵损失。
/ 02 /
问答任务通常是给定一个段落和一个问题,模型需要从段落中找出答案的起始位置和结束位置。
假设我们有一个段落和一个问题:
段落:"BERT is a model developed by Google for natural language processing tasks. It stands for Bidirectional Encoder Representations from Transformers."
问题:"Who developed BERT?"
我们需要从段落中找出答案的起始位置和结束位置。在这个例子中,答案是 "Google",它在段落中的位置如下:
起始位置:6 (第7个词,"Google")
结束位置:6 (第7个词,"Google")
超参数max_seq_length=128EMB_SIZE=768//词嵌入维度HIDDEN_SIZE=768BATCH_SIZE=32#batchsizeNUM_HEADS=4//头的个数
1.训练数据
输入预处理:
将段落和问题转换为BERT的输入格式:[CLS] 问题 [SEP] 段落 [SEP]。
例如:[CLS] Who developed BERT? [SEP] BERT is a model developed by Google for natural language processing tasks. It stands for Bidirectional Encoder Representations from Transformers. [SEP]
分词和ID转换:
使用BERT的分词器将输入序列分词,并将其转换为输入ID、注意力掩码和类型ID。
input_word_idsshape32,128)input_maskshape
32,128)input_type_idsshape
32,128)labelsshape
32,128,2)#标记起始位置和结束位置
2.模型
经过BERT模型的编码器处理后,每个标记都会有一个对应的隐藏状态向量。
假设输入序列长度为L,那么输出将是一个形状为 (L, H) 的矩阵,其中L是序列长度,H是隐藏状态的维度(通常为768)。
我们在BERT模型的输出层添加两个分类层(全连接层),分别用于预测答案的起始位置和结束位置。
这些分类层的输入是每个标记对应的隐藏状态向量,其输出是表示起始和结束位置的logits。
上图中的start就是用于预测答案起始位置的全连接层。
3.微调
3.1.词嵌入
接下来将token ids转换成embedding,在Bert中,每个token都涉及到三种嵌入,第一种是Token embedding,token id转换成词嵌入向量,第二种是位置编码。还有一种是Segment embedding。用于表示哪个句子,0表示第一个句子,1表示第二个句子。
根据超参数EMB_SIZE =768,所以词嵌入维度768,Token embedding通过一个嵌入层[30522,768]将输入[32,128]映射成[32,128,768]。
30522是词表的大小,[30522,768]的嵌入层可以看作是有30522个位置索引的查找表,每个位置存储768维向量。
位置编码可以通过学习的方式获得,也可以通过固定计算方式获得,本次采用固定计算方式。
Segment embedding和输入X大小一致,第一个句子对应为0,第二个位置为1。
最后将三个embedding相加,然后将输出的embedding[32,128,768]输入到编码器中。
3.2.多头注意力
编码器的第一个操作是多头注意力,与Transformer和GPT中不同的是,不计算[PAD]的注意力,会将[PAD]对应位置的注意力分数设置为一个非常小的值,使之经过softmax后为0。
多头注意力的输出维度[32,128,768]。
3.3.MLP
与Transformer和GPT中的一致,MLP的输出维度[32,128,768]。
3.4.输出
编码器的输出[32,128,768],但我们只需要属于段落对应的输出[32,N]。
二分类损失
通过预测起始位置的全连接层[768,2]将段落对应的输出[32,N,768]映射成[32,N,2],表示属于起始位置的概率,通过掩码根据原始标签(32, 128, 2)获取起始位置的标签[32,N],然后与起始位置的标签[32,N]计算交叉熵损失。
同样,通过预测结束位置的全连接层[768,2]将段落对应的输出[32,N,768]映射成[32,N,2],表示属于起始位置的概率,然后与结束位置的标签[32,N]计算交叉熵损失。
| 欢迎光临 链载Ai (https://www.lianzai.com/) | Powered by Discuz! X3.5 |