链载Ai

标题: 从零实现大模型-BERT微调 [打印本页]

作者: 链载Ai    时间: 1 小时前
标题: 从零实现大模型-BERT微调
The Annotated Transformer注释加量版:复现Transformer,训练翻译模型
The Annotated GPT2注释加量版:GPT2预训练
The Annotated BERT注释加量版:BERT预训练
从零实现大模型-GPT2指令微调:GPT2指令微调

按照顺序,轮也该轮到BERT指令微调了吧!

是微调,但不是指令微调!

我们在之前的文章介绍过大模型的多种微调方法,指令微调只是其中一种,就像训犬一样,让它坐就坐,让它卧就卧,同理,你让LLM翻译,它不是去总结,你让它总结,它不是去情感分析。
大语言模型白皮书,让你彻底搞懂训练,微调和提示工程

指令微调在像GPT这种自回归的模型中应用多一些。我们在前一篇文章中基于GPT-2预训练模型进行了指令微调。

除了指令微调,还有一种比较常用的是任务微调,预训练模型虽然具备一定的知识,但尚不能直接用于某些具体任务。

例如,虽然在BERT的预训练过程中,通过Masked Language Model (MLM)和Next Sentence Prediction (NSP)使其学习了语言的基本特征。

Masked Language Model (MLM)

Next Sentence Prediction (NSP)

但它仍不能直接用于自然语言推理(NLI)和问答(QA)等具体任务。因此,今天我们将对之前的BERT预训练模型进行进一步微调,使其能够更好地适应这些具体任务。

但完整代码如下,请结合代码阅读本文。
https://github.com/AIDajiangtang/LLM-from-scratch/blob/main/Bert_fine_tune_from_scratch.ipynb

在正式开始之前,有几点需要注意:
1.在微调阶段,模型架构与预训练要一致,2.使用预训练模型的权重进行初始化而非随机初始化,3.使用预训练相同的分词方法和词表,4.输入数据的格式与预训练阶段一致。例如,BERT模型通常要求输入序列包含[CLS]和[SEP]标记。

所以在下载预训练模型时,除了下载模型参数,通常还要下载配套的词表和模型超参数。

['bert_config.json','bert_model.ckpt.data-00000-of-00001','bert_model.ckpt.index','vocab.txt']


如果要扩充词表来支持多语言,那模型结构中的嵌入层和输出层也需要更改,所以往往需要重新预训练。


有了前面四篇文章的烘托,本篇文章会忽略重复内容。

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;background-color: rgb(255, 255, 255);text-align: center;line-height: 1.75;visibility: visible;">/ 01 /

微调任务1:自然语言推理

自然语言推理任务通常是判断两个句子之间的逻辑关系(如蕴涵、矛盾或中立)。

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.578px;text-wrap: wrap;"/>

Next Sentence Prediction (NSP)可以看作是一种特殊的自然语言推理任务。

1.训练数据

本次微调用的数据来自GLUE MRPC,数据由成对的句子构成,并且还有一个人工标注的标签,表示两个句子是否语义相似。

FeaturesDict({'idx':int32,'label':ClassLabel(shape=(),dtype=int64,num_classes=2),'sentence1':Text(shape=(),dtype=string),'sentence2':Text(shape=(),dtype=string),})

下面打印一条数据。

idx:1680label:0sentence1:b'Theidenticalroverswillactasroboticgeologists,searchingforevidenceofpastwater.'sentence2:b'Theroversactasroboticgeologists,movingonsixwheels.'



词表参数:{'vocab_size':30522,'start_of_sequence_id':101,'end_of_segment_id':102,'padding_id':0,'mask_id':103}

设置batch_size=32,max_seq_length = 128。

则输入ID:

模型的输入X。

'input_word_ids':<tf.Tensor:shape=(32,128),dtype=int32,numpy=array([[101,1996,7235,...,0,0,0],[101,2625,2084,...,0,0,0],[101,6804,1011,...,0,0,0],...,[101,2021,2049,...,0,0,0],[101,2274,2062,...,0,0,0],[101,2043,1037,...,0,0,0]],dtype=int32)>


注意力掩码:

注意力掩码用于区分实际的 token 和填充的 token,1表示实际的 token,0表示填充的 token。

在多头注意力计算时,注意力掩码会将填充位置对应的注意力权重设置为负无穷(通常是一个非常大的负数,如 -10^9),这样在通过 softmax 计算时,这些位置的权重就会接近于零,从而使这些填充位置不会对注意力分数产生影响。

在计算损失时,通常会忽略填充位置对应的 token。

'input_mask':<tf.Tensor:shape=(32,128),dtype=int32,numpy=array([[1,1,1,...,0,0,0],[1,1,1,...,0,0,0],[1,1,1,...,0,0,0],...,[1,1,1,...,0,0,0],[1,1,1,...,0,0,0],[1,1,1,...,0,0,0]],dtype=int32)>,

类型ID:

表示token属于哪个句子,0表示属于句子A,1表示数据句子B。

'input_type_ids':<tf.Tensor:shape=(32,128),dtype=int32,numpy=array([[0,0,0,...,0,0,0],[0,0,0,...,0,0,0],[0,0,0,...,0,0,0],...,[0,0,0,...,0,0,0],[0,0,0,...,0,0,0],[0,0,0,...,0,0,0]],dtype=int32)>


在将token id转换成词嵌入向量时,会将类型id视为segment Embedding。


标签:

['not_equivalent', 'equivalent']->[0,1]

0:表示两个句子语义不相似。

1:表示两个句子语义相似。

<tf.Tensor:shape=(32,),dtype=int64,numpy=array([0,0,1,1,0,0,1,1,1,1,1,1,0,1,1,0,1,1,1,0,1,1,1,1,1,1,1,0,0,1,0,1])>

到此,我们就构造了模型输入和标签。

input_word_idsshape32,128)input_maskshape32,128)input_type_idsshape32,128)labelsshape32,)


2.模型

在模型架构上,相对于BERT预训练,在微调过程中,会在模型的输出层添加一个分类层。这个分类层的输入是[CLS]标记对应的隐藏状态,其输出是表示类别概率的logits。

因为EMB_SIZE =768,所以分类层的输入(32, 768),输出(32, 768,2)。

3.微调

超参数EMB_SIZE=768//词嵌入维度HIDDEN_SIZE=768BATCH_SIZE=32#batchsizeNUM_HEADS=4//头的个数

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;text-wrap: wrap;background-color: rgb(255, 255, 255);">

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;text-wrap: wrap;background-color: rgb(255, 255, 255);">3.1.词嵌入

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;text-wrap: wrap;background-color: rgb(255, 255, 255);">接下来将token ids转换成embedding,在Bert中,每个token都涉及到三种嵌入,第一种是Token embedding,token id转换成词嵌入向量,第二种是位置编码。还有一种是Segment embedding。用于表示哪个句子,0表示第一个句子,1表示第二个句子。

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;text-wrap: wrap;background-color: rgb(255, 255, 255);">

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;text-wrap: wrap;background-color: rgb(255, 255, 255);">根据超参数EMB_SIZE = 768,所以词嵌入维度768,Token embedding通过一个嵌入层[30522,768]将输入[32,128]映射成[32,128,768]。

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;text-wrap: wrap;background-color: rgb(255, 255, 255);">30522是词表的大小,[30522,768]的嵌入层可以看作是有30522个位置索引的查找表,每个位置存储768维向量。

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;text-wrap: wrap;background-color: rgb(255, 255, 255);">位置编码可以通过学习的方式获得,也可以通过固定计算方式获得,本次采用固定计算方式。

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;text-wrap: wrap;background-color: rgb(255, 255, 255);">Segment embedding和输入X大小一致,第一个句子对应为0,第二个位置为1。

最后将三个embedding相加,然后将输出的embedding[32,128,768]输入到编码器中。

3.2.多头注意力

编码器的第一个操作是多头注意力,与Transformer和GPT中不同的是,不计算[PAD]的注意力,会将[PAD]对应位置的注意力分数设置为一个非常小的值,使之经过softmax后为0。

多头注意力的输出维度[32,128,768]。

3.3.MLP

与Transformer和GPT中的一致,MLP的输出维度[32,128,768]。

3.4.输出

编码器的输出[32,128,768],但我们只需要[CLS]对应的输出[32,768]。

二分类损失

通过另一个线性层[768,2]将开头的[CLS]的输出[32,768]映射成[32,2],表示属于正负类的概率,然后与标签[32,]计算交叉熵损失。


/ 02 /

微调任务2:问答

问答任务通常是给定一个段落和一个问题,模型需要从段落中找出答案的起始位置和结束位置。

示例

假设我们有一个段落和一个问题:

段落:"BERT is a model developed by Google for natural language processing tasks. It stands for Bidirectional Encoder Representations from Transformers."

问题:"Who developed BERT?"

我们需要从段落中找出答案的起始位置和结束位置。在这个例子中,答案是 "Google",它在段落中的位置如下:

超参数max_seq_length=128EMB_SIZE=768//词嵌入维度HIDDEN_SIZE=768BATCH_SIZE=32#batchsizeNUM_HEADS=4//头的个数


1.训练数据

2.模型

上图中的start就是用于预测答案起始位置的全连接层。

3.微调

3.1.词嵌入

接下来将token ids转换成embedding,在Bert中,每个token都涉及到三种嵌入,第一种是Token embedding,token id转换成词嵌入向量,第二种是位置编码。还有一种是Segment embedding。用于表示哪个句子,0表示第一个句子,1表示第二个句子。

根据超参数EMB_SIZE =768,所以词嵌入维度768,Token embedding通过一个嵌入层[30522,768]将输入[32,128]映射成[32,128,768]。

30522是词表的大小,[30522,768]的嵌入层可以看作是有30522个位置索引的查找表,每个位置存储768维向量。

位置编码可以通过学习的方式获得,也可以通过固定计算方式获得,本次采用固定计算方式。

Segment embedding和输入X大小一致,第一个句子对应为0,第二个位置为1。

最后将三个embedding相加,然后将输出的embedding[32,128,768]输入到编码器中。

3.2.多头注意力

编码器的第一个操作是多头注意力,与Transformer和GPT中不同的是,不计算[PAD]的注意力,会将[PAD]对应位置的注意力分数设置为一个非常小的值,使之经过softmax后为0。

多头注意力的输出维度[32,128,768]。

3.3.MLP

与Transformer和GPT中的一致,MLP的输出维度[32,128,768]。

3.4.输出

编码器的输出[32,128,768],但我们只需要属于段落对应的输出[32,N]。

二分类损失

通过预测起始位置的全连接层[768,2]将段落对应的输出[32,N,768]映射成[32,N,2],表示属于起始位置的概率,通过掩码根据原始标签(32, 128, 2)获取起始位置的标签[32,N],然后与起始位置的标签[32,N]计算交叉熵损失。

同样,通过预测结束位置的全连接层[768,2]将段落对应的输出[32,N,768]映射成[32,N,2],表示属于起始位置的概率,然后与结束位置的标签[32,N]计算交叉熵损失。






欢迎光临 链载Ai (https://www.lianzai.com/) Powered by Discuz! X3.5