PlanRAG技术:它通过两个主要的推理类型来回答问题:首先是制定计划,其次是基于检索结果的推理。PlanRAG技术的核心在于,它使用单个语言模型来执行这两种类型的推理,以减少使用不同语言模型可能带来的副作用。
PlanRAG的推理过程:PlanRAG的推理过程包括三个主要步骤:
规划(Planning):语言模型接收决策问题、数据库架构和业务规则作为输入,生成一个初始的数据分析计划。
检索与回答(Retrieving & Answering):与之前的RAG技术不同,PlanRAG在这一步骤中不仅考虑问题和规则,还包括初始计划,以更有效地生成数据分析查询。
重新规划(Re-planning):如果初始计划不足以解决问题,PlanRAG会根据每次检索的结果评估当前计划,并生成新的计划或纠正先前分析的方向。
在定位场景中,先前的迭代RAG与PlanRAG 推理过程的示例
IterRAG-LM和PlanRAGLM 在简单回答(SR)和多步回答(MR)问题上的准确率(%)
#PrefixYouareadecision-makingagentansweringagivenquestion.Youshouldcollectthedatatoanswerthequestion:#TooldescriptionsGraphDB:Usefulforwhenyouneedtocollectthedatathatfollowsthefollowingschema(YouMUSTgenerateaCypherquerystatementtointeractwiththistool)n:Trade_node{{name,local_value,is_inland,total_power,outgoing,ingoing}});(m:Country{{name,home_node,development}});(Trade_node)-[r:source{{flow}}]->[Trade_node](Country)-[NodeCountry{{is_home,has_merchant,base_trading_power,calculated_trading_power}}]->(Trade_node),args:{{{{'tool_input':{{{{'type':'string'}}}}}}}}Selfthinking:Usefulforwhenthereisnoavailabletool.,args:{{{{'tool_input':{{{{'type':'string'}}}}}}}}#FormatinstructionsUsethefollowingStrictformat
uestion:theinputquestionyoumustanswer.Thought:youshouldalwaysthinkaboutwhattodo.Action:asuitabledatabasename,MUSTbeoneof[‘GraphDB’,‘Self-thinking’].Actioninput:asyntacticallycorrectquerystatementonly,MUSTbewrittenbyCypherquerylanguage.Observation:theresultoftheaction.Thought:Inowknowtheanswer.Finalanswer:thefinalanswertothequestionbasedontheobserveddata.#SuffixBegin!KeepinmindthatYourresponseMUSTfollowthevalidformatabove.
#PrefixYouareadecision-makingagentansweringagivenquestion.Youhavealreadycollectedthedatatoanswerthequestion.Indeed,youshouldmakeyourFinalanswerimmediately.:#TooldescriptionsGraphDB:Usefulforwhenyouneedtocollectthedatathatfollowsthefollowingschema(YouMUSTgenerateaCypherquerystatementtointeractwiththistool)n:Trade_node{{name,local_value,is_inland,total_power,outgoing,ingoing}});(m:Country{{name,home_node,development}});(Trade_node)-[r:source{{flow}}]->[Trade_node](Country)-[NodeCountry{{is_home,has_merchant,base_trading_power,calculated_trading_power}}]->(Trade_node),args:{{{{'tool_input':{{{{'type':'string'}}}}}}}}Selfthinking:Usefulforwhenthereisnoavailabletool.,args:{{{{'tool_input':{{{{'type':'string'}}}}}}}}#FormatinstructionsUsethefollowingStrictformat:Finalanswer:thefinalanswertothequestionbasedontheobserveddata.#SuffixBegin!
https://arxiv.org/pdf/2406.12430PlanRAG:APlan-then-RetrievalAugmentedGenerationforGenerativeLargeLanguageModelsasDecisionMakershttps://github.com/myeon9h/PlanRAG.
| 欢迎光临 链载Ai (https://www.lianzai.com/) | Powered by Discuz! X3.5 |