链载Ai

标题: Meta亲自下场教学Llama3.1 Agent/RAG! [打印本页]

作者: 链载Ai    时间: 昨天 10:50
标题: Meta亲自下场教学Llama3.1 Agent/RAG!
这次Llama 3.1发布大家期待较多的是405B模型,但工具调用才是大模型落地的重头戏,Meta这次也开源了一个专门的框架:llama-agentic-system。
运行Llama 3.1作为能够执行“Agentic”任务的系统,例如:
同时在 Llama3.1 的文档里也详细的写了完整的提示语法和工具调用方法,分内置自定义调用两种方式:

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;border-left: 4px solid rgb(248, 57, 41);">内置示例

使用以下prompt调用三个内置工具:
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Environment: ipythonTools: brave_search, wolfram_alpha
Cutting Knowledge Date: December 2023Today Date: 23 Jul 2024
You are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>
What is the current weather in Menlo Park, California?<|eot_id|><|start_header_id|>assistant<|end_header_id|>

步骤 - 1 用户提示和系统提示

<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Environment: ipythonTools: brave_search, wolfram_alpha
Cutting Knowledge Date: December 2023Today Date: 23 Jul 2024
You are a helpful Assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>
Can you help me solve this equation: x^3 - 4x^2 + 6x - 24 = 0<|eot_id|><|start_header_id|>assistant<|end_header_id|>

步骤 - 2 模型确定调用哪个工具

<|python_tag|>wolfram_alpha.call(query="solvex^3-4x^2+6x-24=0")<|eom_id|>

步骤 - 3 由工具即 Wolfram Alpha 生成响应。

{"queryresult":{"success":true,"inputstring":"solvex^3-4x^2+6x-24=0","pods":[{"title":"Inputinterpretation","subpods":[{"title":"","plaintext":"solvex^3-4x^2+6x-24=0"}]},{"title":"Results","primary":true,"subpods":[{"title":"","plaintext":"x=4"},{"title":"","plaintext":"x=±(isqrt(6))"}]},...]}}

步骤 - 4 使用工具响应重新提示模型

<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Environment: ipythonTools: brave_search, wolfram_alpha
Cutting Knowledge Date: December 2023Today Date: 23 Jul 2024
You are a helpful Assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>

Can you help me solve this equation: x^3 - 4x^2 + 6x - 24 = 0<|eot_id|><|start_header_id|>assistant<|end_header_id|>
<|python_tag|>wolfram_alpha.call(query="solve x^3 - 4x^2 + 6x - 24 = 0")<|eom_id|><|start_header_id|>ipython<|end_header_id|>
{"queryresult": {"success": true, "inputstring": "solve x^3 - 4x^2 + 6x - 24 = 0", "pods": [{"title": "Input interpretation", "subpods": [{"title": "", "plaintext": "solve x^3 - 4 x^2 + 6 x - 24 = 0"}]}, {"title": "Results", "primary": true, "subpods": [{"title": "", "plaintext": "x = 4"}, {"title": "", "plaintext": "x = \u00b1 (i sqrt(6))"}]}, ... ]}}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

步骤 - 5 智能体对用户的回复

Thesolutionstotheequationx^3-4x^2+6x-24=0arex=4andx=±(i√6).<|eot_id|>

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;border-left: 4px solid rgb(248, 57, 41);">自定义工具调用示例

Meta Llama 3.1模型现在可以从单个消息输出自定义工具调用,以便更轻松地调用工具。模型本身并不执行调用;它提供结构化输出以方便执行器调用。可以在llama-agentic-system中找到一个示例执行器,工具格式类似于OpenAI 定义。

步骤 - 1 用户提示自定义工具详细信息

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Environment: ipythonTools: brave_search, wolfram_alpha
Cutting Knowledge Date: December 2023Today Date: 23 Jul 2024
# Tool Instructions- Always execute python code in messages that you share.- When looking for real time information use relevant functions if available else fallback to brave_search

You have access to the following functions:
Use the function 'spotify_trending_songs' to: Get top trending songs on Spotify{"name": "spotify_trending_songs","description": "Get top trending songs on Spotify","parameters": {"n": {"param_type": "int","description": "Number of trending songs to get","required": true}}}

IfayouchoosetocallafunctionONLYreplyinthefollowingformat:<{start_tag}={function_name}>{parameters}{end_tag}where
start_tag => `<function`parameters => a JSON dict with the function argument name as key and function argument value as value.end_tag => `</function>`
Here is an example,<function=example_function_name>{"example_name": "example_value"}</function>
Reminder:- Function calls MUST follow the specified format- Required parameters MUST be specified- Only call one function at a time- Put the entire function call reply on one line"- Always add your sources when using search results to answer the user query
You are a helpful Assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>
Can you check the top 5 trending songs on spotify?<|eot_id|><|start_header_id|>assistant<|end_header_id|>

步骤 - 2 模型确定调用哪个工具

{"name":"get_current_conditions","parameters":{"location":"SanFrancisco,CA","unit":"Fahrenheit"}}<eot_id>

步骤 - 3 调用工具的结果被传回模型

<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a helpful assistant with tool calling capabilities. When you receive a tool call response, use the output to format an answer to the orginal use question.<|eot_id|><|start_header_id|>user<|end_header_id|>
Given the following functions, please respond with a JSON for a function call with its proper arguments that best answers the given prompt.
Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}. Do not use variables.
{"type": "function","function": {"name": "get_current_conditions","description": "Get the current weather conditions for a specific location","parameters": {"type": "object","properties": {"location": {"type": "string","description": "The city and state, e.g., San Francisco, CA"},"unit": {"type": "string","enum": ["Celsius", "Fahrenheit"],"description": "The temperature unit to use. Infer this from the user's location."}},"required": ["location", "unit"]}}}
Question: what is the weather like in San Fransisco?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{"name": "get_current_conditions", "parameters": {"location": "San Francisco, CA", "unit": "Fahrenheit"}}<|eot_id|><|start_header_id|>ipython<|end_header_id|>
Clouds giving way to sun Hi: 76° Tonight: Mainly clear early, then areas of low clouds forming Lo: 56°"<|eot_id|><|start_header_id|>assistant<|end_header_id|>

步骤 - 4 模型生成用户的最终响应

TheweatherinMenloParkiscurrentlycloudywithahighof76°andalowof56°,withclearskiesexpectedtonight.<eot_id>

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;border-left: 4px solid rgb(248, 57, 41);">NvidiaAgentic RAG(Llama-3.1)

对于Llama 3.1的强大工具调用功能能力,NVIDIA已与Meta 合作,以确保最新的 Llama 模型能够通过 NVIDIA NIM得到最佳部署。

多Agent框架(例如 LangGraph)使开发人员能够将 LLM 应用程序级逻辑分组为节点和边缘,以便更精细地控制代理决策。带有 NVIDIA LangChain OSS 连接器的LangGraph可用于嵌入、重新排序和使用LLM 实现必要的Agentic RAG技术。
为了实现这一点,应用程序开发人员必须在其RAG管道之上包含更精细的决策。
具有默认路由器的AgenticRAG工作流
带有Web搜索工具的Agentic RAG工作流程
带有问题重写的AgenticRAG工作流程
https://developer.nvidia.com/blog/build-an-agentic-rag-pipeline-with-llama-3-1-and-nvidia-nemo-retriever-nims/https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/https://github.com/meta-llama/llama-agentic-system/tree/main







欢迎光临 链载Ai (https://www.lianzai.com/) Powered by Discuz! X3.5