链载Ai

标题: 面壁小钢炮 MiniCPM-V 2.6 部署指南 [打印本页]

作者: 链载Ai    时间: 6 小时前
标题: 面壁小钢炮 MiniCPM-V 2.6 部署指南

再次刷新端侧多模态天花板,面壁「小钢炮」 MiniCPM-V 2.6模型重磅上新!发布即支持llama.cpp、ollama、vllm推理!
仅 8B 参数,取得 20B 以下单图、多图、视频理解3 SOTA成绩,一举将端侧AI多模态能力拉升至全面对标 GPT-4V 水平。
更有多项功能首次上「端」:小钢炮一口气将实时视频理解、多图联合理解、多图 ICL 等能力首次搬上端侧多模态模型,更接近充斥着复杂、模糊、连续实时视觉信息的多模态真实世界,更能充分发挥端侧 AI 传感器富集、贴近用户的优势。
➤模型介绍
?多图、视频首上端!3 SOTA 面壁小钢炮,创 GPT-4V 端侧全面对标新时代!
➤GitHub地址

?https://github.com/OpenBMB/MiniCPM-V

➤Hugging Face 地址

?ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: var(--articleFontsize);letter-spacing: 0.034em;">https://huggingface.co/openbmb/MiniCPM-V-2_6

➤B站配套视频 ,搭配食用更佳
?https://www.bilibili.com/video/BV1sM4m1172r/?spm_id_from=333.999.0.0&vd_source=1534be4f756204643265d5f6aaa38c7b
公众号后台回复“小钢炮”,可解锁知识库教程全文。
ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 15px;letter-spacing: 0.578px;width: 676.982px !important;visibility: visible !important;" width="2138"/>

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;visibility: visible;margin-bottom: 16px;"> ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 17px;letter-spacing: 0.544px;background-color: rgb(255, 255, 255);float: left;visibility: visible !important;width: 26px !important;"/>

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;widows: 1;caret-color: rgb(34, 34, 34);text-align: left;visibility: visible;margin-bottom: 16px;">vLLM推理ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: var(--articleFontsize);letter-spacing: 0.034em;">

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;widows: 1;caret-color: rgb(34, 34, 34);text-align: left;visibility: visible;margin-bottom: 16px;">使用Python进行推理

  1. 首先前往huggingface下载pytorch权重:

gitclonehttps://huggingface.co/openbmb/MiniCPM-V-2_6
  1. 使用git下载安装vllm

gitclonehttps://github.com/vllm-project/vllm.gitcdvllmpipinstalle.
  1. 创建一个python代码调用vllm

from PIL import Imagefrom transformers import AutoTokenizerfrom vllm import LLM, SamplingParams
# 图像文件路径列表IMAGES = ["/root/ld/ld_project/MiniCPM-V/assets/airplane.jpeg",# 本地图片路径]
# 模型名称或路径MODEL_NAME = "/root/ld/ld_model_pretrained/Minicpmv2_6"# 本地模型路径或Hugging Face模型名称
# 打开并转换图像image = Image.open(IMAGES[0]).convert("RGB")
# 初始化分词器tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
# 初始化语言模型llm = LLM(model=MODEL_NAME, gpu_memory_utilization=1,# 使用全部GPU内存 trust_remote_code=True, max_model_len=2048)# 根据内存状况可调整此值
# 构建对话消息messages = [{'role': 'user', 'content': '(<image>./</image>)\n' + '请描述这张图片'}]
# 应用对话模板到消息prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# 设置停止符ID# 2.0# stop_token_ids = [tokenizer.eos_id]# 2.5#stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id]# 2.6 stop_tokens = ['<|im_end|>', '<|endoftext|>']stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
# 设置生成参数sampling_params = SamplingParams(stop_token_ids=stop_token_ids,# temperature=0.7,# top_p=0.8,# top_k=100,# seed=3472,max_tokens=1024,# min_tokens=150,temperature=0,use_beam_search=True,# length_penalty=1.2,best_of=3)
# 获取模型输出outputs = llm.generate({"prompt": prompt,"multi_modal_data": {"image": image}}, sampling_params=sampling_params)print(outputs[0].outputs[0].text)

4. 使用视频推理

from transformers import AutoTokenizerfrom decord import VideoReader, cpufrom PIL import Imagefrom vllm import LLM, SamplingParams
# 进行图片推理MAX_NUM_FRAMES = 64def encode_video(filepath):def uniform_sample(l, n):gap = len(l) / nidxs = [int(i * gap + gap / 2) for i in range(n)]return [l[i] for i in idxs]vr = VideoReader(filepath, ctx=cpu(0))sample_fps = round(vr.get_avg_fps() / 1)# FPSframe_idx = [i for i in range(0, len(vr), sample_fps)]if len(frame_idx)>MAX_NUM_FRAMES:frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES)video = vr.get_batch(frame_idx).asnumpy()video = [Image.fromarray(v.astype('uint8')) for v in video]return video
MODEL_NAME = "openbmb/MiniCPM-V-2_6" # or local model path
video = encode_video("xxx.mp4")messages = [{"role":"user","content":"".join(["(<image>./</image>)"] * len(video)) + \"\nPlease describe this video."}]prompt = tokenizer.apply_chat_template(messages,tokenize=False,add_generation_prompt=True)tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)llm = LLM(model=MODEL_NAME,gpu_memory_utilization=1,max_model_len=4096)
stop_tokens = ['<|im_end|>', '<|endoftext|>']stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
sampling_params = SamplingParams(stop_token_ids=stop_token_ids, use_beam_search=Truetemperature=0, max_tokens=64)
outputs = llm.generate({"prompt": prompt,"multi_modal_data": {"image": {"images": video,"use_image_id": False,"max_slice_nums": 1 if len(video) > 16 else 2}}}, sampling_params=sampling_params_beam)


ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;text-align: left;widows: 1;caret-color: rgb(34, 34, 34);font-size: 24px;">vLLM API Server

  1. 使用git下载安装vllm

gitclonehttps://github.com/vllm-project/vllm.gitcdvllmpipinstalle.
  1. 命令行启动vllm服务

--dtype 计算精度
max-model-len 模型处理最大长度
api-key 密码
gpu_memory_utilization gpu使用率
更多参数请访问:https://docs.vllm.ai/en/latest/models/engine_args.html
vllmserve/root/ld/ld_model_pretrained/Minicpmv2_6--dtypeauto--max-model-len2048--api-keytoken-abc123--gpu_memory_utilization1--trust-remote-code
  1. 使用python代码调用vllm的http服务

3.1 传入网络图片

from openai import OpenAIopenai_api_key = "token-abc123" # your api key set in launch serveropenai_api_base = "http://localhost:8000/v1" # http idclient = OpenAI(api_key=openai_api_key,base_url=openai_api_base,)
chat_response = client.chat.completions.create(model="/root/ld/ld_model_pretrained/Minicpmv2_6", # model_local_path or huggingface idmessages=[{"role": "user","content": [# NOTE: 使用图像令牌 <image> 的提示格式是不必要的,因为提示将由API服务器自动处理。# 由于提示将由API服务器自动处理,因此不需要使用包含 <image> 图像令牌的提示格式。{"type": "text", "text": "请描述这张图片"},{"type": "image_url","image_url": {"url": "https://air-example-data-2.s3.us-west-2.amazonaws.com/vllm_opensource_llava/stop_sign.jpg",},},],}],extra_body={"stop_token_ids": [151645, 151643]})print("Chat response:", chat_response)print("Chat response content:", chat_response.choices[0].message.content)

3.2 传入本地图片

from openai import OpenAIopenai_api_key = "token-abc123" # your api key set in launch serveropenai_api_base = "http://localhost:8000/v1" # http idclient = OpenAI(api_key=openai_api_key,base_url=openai_api_base,)
# 用于传本地图片with open('your/local/pic/path','rb') as file:image = "data:image/jpeg;base64,"+ base64.b64encode(file.read()).decode('utf-8')
chat_response = client.chat.completions.create(model="/root/ld/ld_model_pretrained/Minicpmv2_6", # model_local_path or huggingface idmessages=[{"role": "user","content": [# NOTE: 使用图像令牌 <image> 的提示格式是不必要的,因为提示将由API服务器自动处理。# 由于提示将由API服务器自动处理,因此不需要使用包含 <image> 图像令牌的提示格式。{"type": "text", "text": "请描述这张图片"},{"type": "image_url","image_url": {"url": image,},},],}],extra_body={"stop_token_ids": [151645, 151643]})print("Chat response:", chat_response)print("Chat response content:", chat_response.choices[0].message.content)


ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;visibility: visible;"> ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 17px;letter-spacing: 0.544px;background-color: rgb(255, 255, 255);float: left;visibility: visible !important;width: 26px !important;"/>

llama.cpp推理

设备要求:运行非量化版内存超过19g,运行量化版超过8g内存

1. 下载依赖包

brewinstallffmpegbrewinstallpkg-config

2. 获取openbmb的llama.cpp分支


gitclone-bminicpm-v2.5https://github.com/OpenBMB/llama.cpp.git

3. 编译llama.cpp

cdllama.cppmake

4. 获取MiniCPM-V 2.6的gguf权重

方法一:

a. 首先前往huggingface或者modelscope下载pytorch权重:

gitclonehttps://huggingface.co/openbmb/MiniCPM-V-2_6
b. 使用上述llama.cpp将模型权重转化为gguf文件:
#第一行为获得模型中间输出,为转换为gguf作准备python./examples/llava/minicpmv-convert/minicpmv2_6-surgery.py-m../MiniCPM-V-2_6#将siglip模型转换为ggufpython./examples/llava/minicpmv-convert/minicpmv2_6-convert-image-encoder-to-gguf.py-m../MiniCPM-V-2_6--minicpmv-projector../MiniCPM-V-2_6/minicpmv.projector--output-dir../MiniCPM-V-2_6/--image-mean0.50.50.5--image-std0.50.50.5#将语言模型转换为ggufpython./convert-hf-to-gguf.py../MiniCPM-V-2_6/model
c. 如果需要的话,对语言模块进行量化:
#quantizeint4version./llama-quantize../MiniCPM-V-2_6/model/ggml-model-f16.gguf../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.ggufQ4_K_M

方法二:

直接前往MiniCPM-V 2.6-gguf官方仓库下载模型,ggml-model-Q4_K_M.gguf(量化版)和ggml-model-f16.gguf二者选其一。
下载地址:https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf/tree/main

5. 开始推理:

5.1 图片推理指令
./llama-minicpmv-cli-m./Minicpmv2_6gguf/ggml-model-Q4_K_M.gguf--mmproj./Minicpmv2_6gguf/mmproj-model-f16.gguf-c4096--temp0.7--top-p0.8--top-k100--repeat-penalty1.05--image./Minicpmv2_6gguf/42.jpg-p"这张图片中有什么?"

5.2 视频推理指令

./llama-minicpmv-cli-m/Users/liudan/Downloads/Minicpmv2_6gguf/ggml-model-Q4_K_M.gguf--mmproj/Users/liudan/Downloads/Minicpmv2_6gguf/mmproj-model-f16.gguf-c8192--temp0.7--top-p0.8--top-k100--repeat-penalty1.05--video./Minicpmv2_6gguf/test_vedieo.mp4-p"我接下来会给你一个视频,请告诉我视频中描述了什么"


Ollama推理

ollma官方github即将合并我们的ollama分支,请关注我们的 GitHub
设备要求:运行非量化版本需要19g以上内存,运行量化版本需要8g以上内存

1. 按照上述llama.cpp教程获取gguf模型

语言模型最好是量化模型。

2. 获取openbmb官方ollma分支

gitclone-bminicpm-v2.6https://github.com/OpenBMB/ollama.gitcdollama/llm

3. 环境需求

brewinstallgocmakegcc

4. 安装大型模型依赖项:

gogenerate./...

5. 编译ollama

gobuild.

6. 编译成功,在ollama主路径启动ollama:

./ollamaserve

7. 创建一个Modelfile:

vimminicpmv2_6.Modelfile
Modelfile的内容如下:
FROM ./MiniCPM-V-2_6/model/ggml-model-Q4_K_M.ggufFROM ./MiniCPM-V-2_6/mmproj-model-f16.gguf
TEMPLATE """{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>{{ end }}
{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>{{ end }}
<|im_start|>assistant<|im_end|>
{{ .Response }}<|im_end|>"""
PARAMETER stop "<|endoftext|>"PARAMETER stop "<|im_end|>"PARAMETER num_ctx 2048

8. 创建ollama模型实例:

ollamacreateminicpm2.6-fminicpmv2_6.Modelfile

9. 另起一个命令行窗口,运行ollama模型实例:

ollamarunminicpm2.6

10. 输入问题和图片 URL,以空格分隔

Whatisdescribedinthispicture?/Users/liudan/Desktop/11.jpg






欢迎光临 链载Ai (https://www.lianzai.com/) Powered by Discuz! X3.5