知识图谱技术是一种集机器学习、信息抽取与检索、知识表达于一体的综合性技术,它通过知识获取与表达、知识关联构建、知识存储与利用三个阶段来实现从数据到知识图谱的转化。具体来说,首先从不同数据源中提取信息并将其转化为知识图谱可以理解的形式,然后通过构建知识之间的关联来形成图谱结构,最终将构建好的图谱存储起来,以便在需要时进行检索和应用。
知识图谱表征,亦称为知识图谱嵌入,是一种将知识图谱中的实体和关系转化为向量形式的技术。这种转换使得计算机能够更好地理解和处理这些信息。在知识图谱中,实体和关系通常以三元组的形式出现,例如"(中国,首都,北京)"。
ingFang SC", miui, "Hiragino Sans GB", "Microsoft Yahei", sans-serif;text-align: start;background-color: rgb(255, 255, 255);white-space-collapse: preserve !important;word-break: break-word !important;">技术实现的步骤主要包括:构建实体和关系的表达:将实体和关系映射到向量空间。
构建评价函数:用于评估实体和关系向量表达的合理性。
学习实体和关系的向量表达:通过算法学习实体和关系的最优向量表示。
平移距离模型:这类模型通过测量实体在向量空间中的距离来评估它们之间关系的合理性。例如,TransE模型,它将三元组"(h, r, t)"视为从向量h到向量t的平移,其中r是这个平移向量。在这种模型下,我们期望h + r ≈ t,即实体h加上关系向量r后,应近似等于实体t的向量表示。
语义匹配模型:这类模型使用基于相似性的评价函数,通过比较实体在语义和向量空间中的相似度来衡量它们之间的关系。这种方法侧重于实体间的语义相似性,以此来评估它们之间的联系。
| 欢迎光临 链载Ai (https://www.lianzai.com/) | Powered by Discuz! X3.5 |