长视频理解:该模型能够理解超过 20 分钟的长视频,这在多模态模型中是一项重大的突破。通过在线流媒体能力,它可以支持高质量的视频问答、对话和内容创作等应用,为视频领域的智能化发展提供了有力的支持。
Qwen2-VL 除了支持英语和中文外,还能理解图像视频中的多种语言文本,包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等,真正做到了面向全球用户,打破了语言的障碍,为多语言环境下的应用提供了便利。
Qwen2-VL 具备强大的视觉智能体能力,可自主操作手机和机器人等设备。借助其复杂的推理和决策能力,能够根据视觉环境和文字指令进行自动操作,实现了人工智能与现实世界的更紧密结合,为智能家居、智能机器人等领域的发展带来了新的机遇。
Qwen2-VL 延续了上一代 Qwen-VL 中 ViT 加 Qwen2 的串联结构,三个不同规模的模型都采用了 600M 规模大小的 ViT,支持图像和视频统一输入。这种结构使得模型能够更好地融合视觉和语言信息,提高对多模态数据的理解能力。
传统的旋转位置嵌入只能捕捉一维序列的位置信息,而 Qwen2-VL 采用的 M-ROPE 将旋转位置编码分解成时间、空间(高度和宽度)三部分,使大规模语言模型能够同时捕捉和整合一维文本、二维视觉和三维视频的位置信息,赋予了模型强大的多模态处理和推理能力,能够更好地理解和建模复杂的多模态数据。
1. 基准测试成绩优异
2. 高效的计算效率
在保证高性能的同时,Qwen2-VL 还具有较高的计算效率,能够在不同的硬件平台上快速运行,为大规模应用提供了可能。其量化版本的发布,进一步提高了模型的计算效率,降低了部署成本。
此次 Qwen2 - VL 进行了开源,其中包含两个尺寸的模型,分别是 Qwen2 - VL - 2B - Instruct 以及 Qwen2 - VL - 7B - Instruct,同时还提供了其 GPTQ 和 AWQ 的量化版本。
modelscopedownload--model=qwen/Qwen2-VL-7B-Instruct--local_dir./Qwen2-VL-7B-Instruct
pip install git+https://github.com/huggingface/transformerspip install qwen-vl-utils
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessorfrom qwen_vl_utils import process_vision_info# default: Load the model on the available device(s)# model = Qwen2VLForConditionalGeneration.from_pretrained(# "./Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"# )import torchmodel = Qwen2VLForConditionalGeneration.from_pretrained("./Qwen2-VL-7B-Instruct",torch_dtype=torch.bfloat16,attn_implementation="flash_attention_2",).to("cuda:0")# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.# model = Qwen2VLForConditionalGeneration.from_pretrained(# "Qwen/Qwen2-VL-7B-Instruct",# torch_dtype=torch.bfloat16,# attn_implementation="flash_attention_2",# device_map="auto",# )# default processerprocessor = AutoProcessor.from_pretrained("./Qwen2-VL-7B-Instruct")# The default range for the number of visual tokens per image in the model is 4-16384.# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.# min_pixels = 256*28*28# max_pixels = 1280*28*28# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)messages = [{"role":"user","content": [{"type": "image","image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",},{"type": "text", "text": "Describe this image."},],}]# Preparation for inferencetext = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)image_inputs, video_inputs = process_vision_info(messages)inputs = processor(text=[text],images=image_inputs,videos=video_inputs,padding=True,return_tensors="pt",)inputs = inputs.to("cuda")# Inference: Generation of the outputgenerated_ids = model.generate(**inputs, max_new_tokens=128)generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)print(output_text)
七、模型微调
swift开源地址:https://github.com/modelscope/swift
gitclonehttps://github.com/modelscope/swift.gitcdswiftpipinstall-e.[llm]pipinstallpyavqwen_vl_utils
2.模型微调
#默认会将lora_target_modules设置为llm的所有linearCUDA_VISIBLE_DEVICES=0,1,2,3NPROC_PER_NODE=4swiftsft\--model_typeqwen2-vl-7b-instruct\--model_id_or_pathqwen/Qwen2-VL-7B-Instruct\--sft_typelora\--datasetcoco-en-mini#20000\--deepspeeddefault-zero2
--datasettrain.jsonl\--val_datasetval.jsonl\
{"query":"<image>55555","response":"66666","images":["image_path"]}{"query":"eeeee<image>eeeee<image>eeeee","response":"fffff","history":[],"images":["image_path1","image_path2"]}{"query":"EEEEE","response":"FFFFF","history":[["query1","response2"CUDA_VISIBLE_DEVICES=0swiftinfer\--ckpt_diroutput/qwen2-vl-7b-instruct/vx-xxx/checkpoint-xxx\--load_dataset_configtrue--merge_loratrue
阿里通义千问的 Qwen2-VL 是一款具有强大功能和优异性能的视觉语言模型,它的发布为多模态技术的发展带来了新的机遇。无论是在视觉理解能力、多语言支持还是视觉智能体能力方面,Qwen2-VL 都表现出了卓越的性能,为各种应用场景的智能化发展提供了有力的支持。随着技术的不断发展和应用场景的不断拓展,相信 Qwen2-VL 将在未来发挥更加重要的作用。
| 欢迎光临 链载Ai (https://www.lianzai.com/) | Powered by Discuz! X3.5 |