链载Ai

标题: 动态NLP转换!自适应提示与DSPy助力自然语言理解 [打印本页]

作者: 链载Ai    时间: 昨天 11:40
标题: 动态NLP转换!自适应提示与DSPy助力自然语言理解

这篇文章Transforming NLP with Adaptive Prompting and DSPy讲述了自适应提示 (Adaptive Prompting) 技术在 LLM 中的应用, 以及如何使用 DSPy 来实现自适应提示策略。

什么是自适应提示?

自适应提示的优势

自适应提示的应用场景

通过利用自适应提示,应用程序可以更有效地吸引用户、处理复杂的交互和提供有价值的见解。自适应提示的灵活性和响应能力使其成为提高跨各个领域模型交互的质量和相关性的强大工具。

使用 DSPy 构建自适应提示策略

DSPy 库通过提供一种结构化方法来管理状态、操作和转换,从而简化了此过程。以下是使用 DSPy 设置自适应提示策略的分步指南:

定义状态和操作

在自适应提示中,状态通常包括当前提示和用户反馈,而操作涉及根据反馈修改提示。 如:

States:

Actions

fromdspyimportState,Action

classAdaptivePromptingDP:
def__init__(self):
#Definestates
self.states={
'initial':State('initial_prompt'),
'feedback':State('feedback')
}

#Defineactions
self.actions={
'adjust_prompt':Action(self.adjust_prompt)
}

defadjust_prompt(self,state,feedback):
#Logictoadjustthepromptbasedonfeedback
if"unclear"infeedback:
return"Canyouclarifyyourresponse?"
else:
return"Thankyouforyourfeedback."

#Initializeadaptiveprompting
adaptive_dp=AdaptivePromptingDP()
创建递归关系

递归关系指导状态如何根据操作进行转换。自适应提示涉及定义如何根据用户反馈更改提示。例如:递归关系可能指定,如果用户提供不明确的反馈,系统应转换为要求澄清的状态。

fromdspyimportTransition

classAdaptivePromptingDP:
def__init__(self):
#Definestates
self.states={
'initial':State('initial_prompt'),
'clarification':State('clarification_prompt')
}

#Defineactions
self.actions={
'adjust_prompt':Action(self.adjust_prompt)
}

#Definetransitions
self.transitions=[
Transition(self.states['initial'],self.states['clarification'],
self.actions['adjust_prompt'])
]

defadjust_prompt(self,state,feedback):
if"unclear"infeedback:
returnself.states['clarification']
else:
returnself.states['initial']

DSPy 实施
fromdspyimportState,Action,Transition,DPAlgorithm

classAdaptivePromptingDP(DPAlgorithm):
def__init__(self):
super().__init__()
#Definestates
self.states={
'initial':State('initial_prompt'),
'clarification':State('clarification_prompt')
}

#Defineactions
self.actions={
'adjust_prompt':Action(self.adjust_prompt)
}

#Definetransitions
self.transitions=[
Transition(self.states['initial'],self.states['clarification'],
self.actions['adjust_prompt'])
]

defadjust_prompt(self,state,feedback):
if"unclear"infeedback:
returnself.states['clarification']
else:
returnself.states['initial']

defcompute(self,initial_state,feedback):
#Computetheadaptedpromptbasedonfeedback
returnself.run(initial_state,feedback)

#Exampleusage
adaptive_dp=AdaptivePromptingDP()
initial_state=adaptive_dp.states['initial']
feedback="Idon'tunderstandthis."
adapted_prompt=adaptive_dp.compute(initial_state,feedback)
print("AdaptedPrompt:",adapted_prompt)

案例研究:情感分析中的自适应提示

在情感分析中,了解用户意见的细微差别可能具有挑战性,尤其是在处理模棱两可或模糊的反馈时。自适应提示可以根据用户响应动态调整提示,从而引发更详细和准确的意见,从而显著增强这一过程。

#ImportingRequiredLibraries
fromdspyimportState,Action,Transition,DPAlgorithm
importmatplotlib.pyplotasplt

#定义SentimentAnalysisPrompting类
classSentimentAnalysisPrompting(DPAlgorithm):
def__init__(self):
super().__init__()
#Definestates
self.states={
'initial':State('initial_prompt'),
'clarification':State('clarification_prompt'),
'detailed_feedback':State('detailed_feedback_prompt')
}

#Defineactions
self.actions={
'request_clarification':Action(self.request_clarification),
'request_detailed_feedback':Action(self.request_detailed_feedback)
}

#Definetransitions
self.transitions=[
Transition(self.states['initial'],self.states['clarification'],
self.actions['request_clarification']),
Transition(self.states['clarification'],self.states
['detailed_feedback'],self.actions['request_detailed_feedback'])
]
#请求澄清操作
defrequest_clarification(self,state,feedback):
#Transitiontoclarificationpromptiffeedbackisunclearorshort
if"notclear"infeedbackorlen(feedback.split())<5:
returnself.states['clarification']
returnself.states['initial']

#请求详细的反馈操作

defrequest_detailed_feedback(self,state,feedback):
#Transitiontodetailedfeedbackpromptiffeedbackindicatesaneed
#formoredetails
if"details"infeedback:
returnself.states['detailed_feedback']
returnself.states['initial']
#计算方法

defcompute(self,initial_state,feedback):
#Computethenextpromptbasedonthecurrentstateandfeedback
returnself.run(initial_state,feedback)

#Initializesentimentanalysisprompting
sa_prompting=SentimentAnalysisPrompting()
initial_state=sa_prompting.states['initial']

#Samplefeedbacksfortesting
feedbacks=[
"Idon'tlikeit.",
"Theproductisokaybutnotgreat.",
"Canyoutellmemoreaboutthefeatures?",
"Ineedmoreinformationtoprovideadetailedreview."
]

#Processfeedbacksandcollectresults
results=[]
forfeedbackinfeedbacks:
adapted_prompt=sa_prompting.compute(initial_state,feedback)
results.append({
'Feedback':feedback,
'AdaptedPrompt':adapted_prompt.name
})
#Printresults
forresultinresults:
print(f"Feedback:{result['Feedback']}\nAdaptedPrompt:{result['AdaptedPrompt']}\n")

#Exampledataforvisualization
#Countofresponsesateachpromptstage
prompt_names=['Initial','Clarification','DetailedFeedback']
counts=[sum(1forrinresultsifr['AdaptedPrompt']==name)fornameinprompt_names]

#Plotting
plt.bar(prompt_names,counts,color=['blue','orange','green'])
plt.xlabel('romptType')
plt.ylabel('NumberofResponses')
plt.title('NumberofResponsesperPromptType')
plt.show()

使用DSPy进行自适应提示的好处






欢迎光临 链载Ai (https://www.lianzai.com/) Powered by Discuz! X3.5