链载Ai

标题: 傻傻分不清?一文彻底说清Agentic RAG的前世今生! [打印本页]

作者: 链载Ai    时间: 昨天 11:57
标题: 傻傻分不清?一文彻底说清Agentic RAG的前世今生!

生成式AI的发展日新月异,一不小心你就会淹没在新的概念中。RAG(检索增强生成)、Agent(智能体)作为主流的大语言模型(LLM)应用形式已经广为人知。这不还经常听到一个词:Agentic RAG,前两天还有人问小编它到底是RAG还是Agent?今天我们就来彻底说清楚Agentic RAG。

01

为什么需要Agentic RAG?

首先,RAG是什么?RAG是用检索到的外部知识来对LLM进行能力增强的一种技术,旨在降低LLM的幻觉并让其更好的适应特定领域内的应用场景。通俗的讲:RAG就是给LLM增加一个可快速查询的“外挂”知识库,增强其能力,以防它不懂的时候胡说八道

RAG = LLM + 知识库 +检索器

它可以让AI准确的回答诸如这样的问题:

经典的RAG流程是借助检索器从知识库中查询问题相关(语义接近)的内容,并把这些内容作为LLM回答的上下文,从而得出最终答案。

现在,让我们考虑以下几个查询场景:

这些都是在实际应用中可能会面临的需求,经典的RAG方案在面临这些场景时会捉襟见肘,因此更“Agentic”的RAG出现了。

02

什么是Agentic RAG?

Agentic RAG就是一种融合了Agent能力的RAG,而Agent的核心能力是自主推理与行动。所以Agentic RAG就是将AI智能体的自主规划(如路由、行动步骤、反思等)能力带入到传统的RAG,以适应更加复杂的RAG查询任务。

Agentic RAG如何应对这些典型的复杂任务?一起来看。

整体来说,Agentic RAG的“智能体”特征主要体现在检索阶段,相对于传统RAG的检索,Agentic RAG更能够:

03

Agentic RAG VS传统RAG

Agentic RAG在整体流程上与传统RAG一脉相承:检索-合成上下文-生成,但由于融入了Agent的自主能力,从而具有更强的适应性与任务质量。

这里的传统RAG指遵循“检索-上下文-生成”单一顺序流程的RAG应用。随着开发框架的不断完善,当前一些常用的高级RAG模块已经具备了部分Agentic的特征,比如:语义路由、多步骤查询转换、子问题查询转换等。


传统单一流程RAGAgentic RAG
场景数据环境简单、任务单一
企业级数据环境,任务多样
数据源
通常基于单个检索引擎通常基于多个检索引擎
索引向量索引为主可灵活结合多种索引
检索规划
无规划或静态规则动态规划下一步检索策略
多步检索
通常不支持
借助多步骤推理自主实现
外部工具通常不支持自动推理使用必要的工具
反省机制通常不支持
借助反省优化问题或重新检索
灵活性
不够灵活,流程固定
自主推理,或灵活编排


04

Agentic RAG技术架构

与顺序式的传统RAG架构相比,Agentic RAG的核心是Agent,而RAG管道(通常是检索器,也可能是完整的RAG查询引擎)则可以看作是Agent使用的一种工具,从而完美的融合到Agent的架构中。

从这个角度说,Agentic RAG是RAG,但更是Agent。从技术架构看,也存在单Agent架构与多Agent架构。

【单Agent的Agentic RAG】

在这个架构中,只有一个具有自主能力的Agent。RAG管道与外部工具都作为Tool提供给Agent,Agent根据输入问题规划与决策这些工具的使用,检索与累积更全面的上下文,最后输出全面而准确的结果。

如果这里的Agent每次规划只会选择一个后端RAG检索管道,那么也就退化成了一个语义路由器模块。

【多Agent的Agentic RAG】

这是一个多层的Agent架构:一个顶层的Agent负责协调多个二级Agent,每个二级Agent再负责特定领域或特定类型的检索或查询任务,可以根据需要灵活划分不同Agent的职责。

比如,你可以这样设计:

多Agent的Agentic RAG架构具备更大的灵活性,实际开发中,你可以对不同的Agent进行单独规划、实现与调试,最后组合成一个更完备的RAG系统,提供超越传统的查询能力。

05

总结

Agentic RAG通过将智能体的核心能力引入到传统RAG,借助Agent的规划与推理能力,极大的增强了RAG检索的全面性、灵活性与准确性,使得能够执行更复杂与多样的数据密集型的查询任务,激发了RAG应用的新潜力。

当然,进步也伴随着挑战。利用智能体思想完成复杂任务也带来了对LLM的更深层依赖,引发了新的响应延迟与不确定性的问题。因此,在开发和使用 Agentic RAG 系统时,需要审慎考虑其优劣,以实现更高效和可靠的应用。






欢迎光临 链载Ai (https://www.lianzai.com/) Powered by Discuz! X3.5