链载Ai

标题: 如何构建一个可信的联邦RAG系统 [打印本页]

作者: 链载Ai    时间: 2 小时前
标题: 如何构建一个可信的联邦RAG系统
今天给大家分享一篇论文。
题目是:C-RAG:如何构建一个可信的联邦检索RAG系统。

论文链接:https://arxiv.org/abs/2412.13163

01

论文概述

尽管大型语言模型 (LLM) 在各种应用中展现出令人印象深刻的能力,但它们仍然存在可信度问题,例如幻觉和偏差。检索增强语言模型 (RAG) 被提出通过接地外部知识来增强生成的可靠性,但对其生成风险的理论理解仍未探索。当前RAGt可信主要存在以下挑战:
这篇论文介绍了C-FedRAG,即Confidential Federated Retrieval-Augmented Generation System,一个保密的联邦检索增强型生成系统。该系统旨在帮助组织利用大型语言模型(LLMs)进行知识查询和分析,同时在不违反数据隐私和安全政策的前提下,解决维护针对性、最新信息的挑战,并减少LLMs在查询响应中的幻觉问题。

02

相关工作

论文中提到的相关研究主要集中在以下几个方面:
  1. FeB4RAG: Evaluating Federated Search in the Context of Retrieval Augmented Generation (Shuai Wang, 2024):

该论文概述了一个在RAG框架内进行联邦搜索的架构,并引入了一个新的数据集,用于评估联邦搜索,解决了现有数据集的局限性。论文强调了开发复杂的联邦搜索策略的重要性,以优化RAG管道并提高生成响应的质量。
  1. Federated Learning-Enhanced Retrieval Augmented Generation (FLERAG) (Eugenia Kim, 2024)

提出了一种新的方法,用于在传统的RAG LLM和跨客户端设备数据训练的FL模型之间选择最佳响应,以解决需要不断更新RAG数据库的问题。通过响应仲裁器选择置信度更高的响应。全局FL模型在所有客户端之间共享,提供更全面和最新的响应,用于与基于预训练知识的LLM响应进行比较。
  1. Cache Me If You Can: The Case For Retrieval Augmentation (RA) in Federated Learning (Aashiq Muhamed, 2024)

提出了一种在FL中使用RA增强的方法,该方法在推理期间结合了基于检索的方法,客户端设备从其本地数据集中检索相关信息,并在将查询输入模型之前增强查询。这种方法解决了隐私问题和法规合规性,同时允许各个客户端的模型从整个网络的集体知识中受益。该方法要求客户端在FL系统中微调自己的模型,使用它们各自的私有数据。
  1. Clinical Question-Answering over Distributed EHR Data (Jiang, 2024)

提出了使用联邦RAG进行临床问答的系统,利用LLM进行临床问题回答,而不损害患者隐私。提出的系统采用了分层设计的联邦文档检索,实现了对分布式临床数据的高效和安全访问。作者还引入了一个新的基于MIMIC-IV数据库的数据集,专门用于评估临床问答系统。通过解决隐私问题和增强可解释性,提出的方法在利用LLM进行临床应用方面迈出了重要一步。
这些相关工作展示了RAG系统在联邦学习背景下的不同应用和研究方向,包括联邦搜索策略的优化、模型选择、隐私保护和法规合规性,以及在临床问答中的应用。这些研究为C-FedRAG系统的提出提供了理论和实践基础。

03

核心内容

论文通过提出一个名为C-FedRAG的系统来解决在保持数据隐私和安全的同时,利用大型语言模型(LLMs)进行知识查询和分析的问题,具体解决方案包括以下几个关键步骤:

1. 检索增强生成

C-FedRAG的基本RAG流程包括:

2. 联邦化和保密计算

C-FedRAG系统的关键组成部分包括:

3. C-FedRAG实现

C-FedRAG系统的实施细节包括:
评估方面,使用MedRAG工具包和MIRAGE基准数据集对C-FedRAG系统的性能进行评估,展示了该系统在处理各种医学文本格式和复杂性方面的能力。

04

论文实验

1. 实验设置

2. 主要结果

C-FedRAG在多个基准测试中展现出竞争性能,尤其是在BioASQ基准测试中,通过集成多个数据源并使用重排名模型,显著提升了性能。由于无法直接提供图片,我将描述表格内容:

3. 结果分析

05

总结讨论

论文讨论了C-FedRAG在处理跨多个数据提供者的问题时面临的限制,包括数据隐私、控制和安全性的挑战,以及在企业环境中部署联邦RAG系统时需要解决的身份和访问管理问题。此外,还讨论了如何防止数据投毒攻击、使用隐私增强技术保护检索上下文,以及如何在数据提供者之间安全地存储、管理和交换多个加密密钥的问题。
这些实验全面评估了C-FedRAG系统在处理跨多个数据源的问题回答任务时的有效性和效率,并与现有的一些先进方法进行了比较。通过这些实验,论文展示了C-FedRAG在保持数据隐私和安全性的同时,能够达到与集中式RAG方法相当的或更好的答案质量。






欢迎光临 链载Ai (https://www.lianzai.com/) Powered by Discuz! X3.5