在 MiniMax-01系列模型中,我们做了大胆创新:首次大规模实现线性注意力机制,传统Transformer架构不再是唯一的选择。这个模型的参数量高达4560亿,其中单次激活459亿。模型综合性能比肩海外顶尖模型,同时能够高效处理全球最长400万token的上下文,是GPT-4o的32倍,Claude-3.5-Sonnet的20倍。
我们相信2025年会是Agent高速发展的一年,不管是单Agent的系统需要持续的记忆,还是多Agent的系统中Agent之间大量的相互通信,都需要越来越长的上下文。在这个模型中,我们走出了第一步,并希望使用这个架构持续建立复杂Agent所需的基础能力。
极致性价比、不断创新
ingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 15px;letter-spacing: 0.034em;">受益于架构的创新、效率的优化、集群训推一体的设计以及我们内部大量并发算力复用,我们得以用业内最低的价格区间提供文本和多模态理解的API,标准定价是输入token 1元/百万token,输出token 8元/百万token。欢迎大家在MiniMax开放平台体验、使用。
https://www.minimaxi.com/en/platform
在长文任务上,我们对比了之前长文最好的模型Google的Gemini。如图(c)所示,随着输入长度变长,MiniMax-Text-01是性能衰减最慢的模型,显著优于Google Gemini。
受益于我们的架构创新,我们的模型在处理长输入的时候有非常高的效率,接近线性复杂度。和其他全球顶尖模型的对比如下:
在大部份的学术集上,我们都取得了比肩海外第一梯队的结果:
ingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.034em;">在长上下文的ingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.034em;">测评集ingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.034em;">上,我们显著领先:
在400万的Needle-In-A-Haystack(大海捞针)检索任务上全绿:
在多模态理解的测试集中,MiniMax-VL-01的模型也较为领先:
| 欢迎光临 链载Ai (https://www.lianzai.com/) | Powered by Discuz! X3.5 |