MLA架构(Multi-head Latent Attention):通过改造注意力机制,压缩KV Cache大小,减少内存占用,从而在相同硬件条件下支持更长的上下文处理。标准Transformer的KV Cache随序列长度线性增长(复杂度O(n²)),导致长上下文场景下内存爆炸。潜在注意力压缩:通过低秩投影(Low-rank Projection)将多头注意力中的K/V矩阵压缩至潜在空间,将KV Cache体积减少60%-80%(例如原需40GB缓存可压缩至8-16GB)。
分页KV缓存(块大小64):采用精细的内存管理策略,提升缓存利用率,降低延迟。
BF16精度支持:兼顾计算性能与内存效率,适配当前主流AI硬件需求。
在H800 SXM5 GPU上的实测数据显示
内存带宽:内存受限场景下达到3000 GB/s,远超H800理论带宽上限(600 GB/s),接近硬件物理极限。
计算性能:计算受限场景下实现580 TFLOPS,逼近Hopper架构的理论峰值。
这一优化使大模型推理速度显著提升,尤其适用于实时生成任务(如聊天机器人、文本生成),同时降低部署成本
DeepSeek公布的对比实验数据揭示了FlashMLA的显著优势
FlashMLA不仅在训练阶段显著降低成本,更在长上下文推理场景中实现突破。其核心技术在于:
| 欢迎光临 链载Ai (https://www.lianzai.com/) | Powered by Discuz! X3.5 |