链载Ai

标题: RAG从入门到精通-RAG简介 [打印本页]

作者: 链载Ai    时间: 10 小时前
标题: RAG从入门到精通-RAG简介

开新坑了,本专题将带领大家使用RAG架构一步步利用搭建自己的知识库问答系统。从ChatGPT的官方API开始,到自己部署开源大模型。都将在这个专题中出现。欢迎大家关注。

前言

RAG(Retrieval Augmented Generation,检索增强生成)是一个将大规模语言模型(LLM)与来自外部知识源的检索相结合的框架,以改进问答能力的工程框架。本文讲对RAG进行简单介绍。

LLM的知识更新难题

在进入RAG的介绍之前,需要读者首先理解一个概念,LLM的知识更新是很困难的,主要原因在于:

  1. LLM的训练数据集是固定的,一旦训练完成就很难再通过继续训练来更新其知识。

  2. LLM的参数量巨大,随时进行fine-tuning需要消耗大量的资源,并且需要相当长的时间。

  3. LLM的知识是编码在数百亿个参数中的,无法直接查询或编辑其中的知识图谱。

因此,LLM的知识具有静态、封闭和有限的特点。为了赋予LLM持续学习和获取新知识的能力,RAG应运而生。

工作原理

RAG本质上是通过工程化手段,解决LLM知识更新困难的问题。其核心手段是利用外挂于LLM的知识数据库(通常使用向量数据库)存储未在训练数据集中出现的新数据、领域数据等。通常而言,RAG将知识问答分成三个阶段:索引、知识检索和基于内容的问答。

第一阶段是知识索引,需要事先将文本数据进行处理,通过词嵌入等向量化技术,将文本映射到低维向量空间,并将向量存储到数据库中,构建起可检索的向量索引。在这个阶段,RAG涉及数据加载器、分割器、向量数据库、提示工程等组件以及LLM本身。

第二阶段是知识检索,当输入一个问题时,RAG会对知识库进行检索,找到与问题最相关的一批文档。这需要依赖于第一阶段建立的向量索引,根据向量间的相似性进行快速检索。

第三阶段是生成答案,RAG会把输入问题及相应的检索结果文档一起提供给LLM,让LLM充分把这些外部知识融入上下文,并生成相应的答案。RAG控制生成长度,避免生成无关内容。

这样,LLM就能够充分利用外部知识库的信息,而不需要修改自身的参数。当知识库更新时,新知识也可以通过prompt实时注入到LLM中。这种设计既发挥了LLM强大的语言生成能力,又规避了其知识更新的困境,使之能更智能地回答各类问题,尤其是需要外部知识支持的问题。

优点

RAG的优点主要体现在以下几个方面:

缺点

RAG的缺点主要表现在以下几个方面:

如何改进

由于上诉缺点的存在,直接使用LangChain等框架实现的RAG框架几乎无法直接在生产中使用,需要进行大量的工程化优化,总得来说,至少包括如下内容:

总结

RAG是一种前景广阔但仍在发展的技术,需要仔细调优与优化才能达到可靠的性能。随着研究的继续,它可能会变得更加稳健,适合工业应用。







欢迎光临 链载Ai (https://www.lianzai.com/) Powered by Discuz! X3.5