返回顶部
热门问答 更多热门问答
技术文章 更多技术文章

如何让模型直接输出 JSON 格式的数据?

[复制链接]
链载Ai 显示全部楼层 发表于 昨天 19:22 |阅读模式 打印 上一主题 下一主题

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 14px;letter-spacing: 0.1em;color: rgb(63, 63, 63);"> 今天想和大家聊一个在实际项目中越来越常见、但又容易被忽视的技术细节——JSON 提示(JSON Prompting)

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 14px;letter-spacing: 0.1em;color: rgb(63, 63, 63);"> 在我们日常与大语言模型(LLM)打交道的过程中,往往希望模型不仅能“说人话”,还能输出结构清晰、便于程序解析的结果。尤其是在构建自动化系统、API 接口或数据抽取流程时,纯文本的自由输出常常带来后续处理的麻烦。这时候,ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: inherit;color: rgb(0, 152, 116);">让模型直接输出 JSON 格式的数据,就成了一种非常实用的技巧。

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;padding-left: 8px;color: rgb(63, 63, 63);">为什么选择 JSON 提示?

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 14px;letter-spacing: 0.1em;color: rgb(63, 63, 63);"> 从工程实践的角度来看,JSON 是目前最通用的结构化数据交换格式之一。它轻量、易读、支持嵌套,且几乎所有编程语言都原生支持解析。当我们希望 LLM 输出字段明确的结果(比如提取信息、生成配置、分类打标等),使用 JSON 格式能显著降低后处理成本。

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 14px;letter-spacing: 0.1em;color: rgb(63, 63, 63);"> 举个简单的例子:如果我们让模型判断一段文本的情感倾向,并返回类别和置信度。如果输出是“情感是正面的,我觉得挺有信心的”,那我们需要再写规则去提取;但如果输出是:

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-feature-settings: normal;font-variation-settings: normal;font-size: 14px;margin: 10px 8px;color: rgb(201, 209, 217);background: rgb(13, 17, 23);text-align: left;line-height: 1.5;overflow-x: auto;border-radius: 8px;padding: 0px !important;">{
"sentiment":"positive",
"confidence":0.93
}

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 14px;letter-spacing: 0.1em;color: rgb(63, 63, 63);"> 那就可以直接ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-feature-settings: normal;font-variation-settings: normal;font-size: 12.6px;text-align: left;line-height: 1.75;color: rgb(221, 17, 68);background: rgba(27, 31, 35, 0.05);padding: 3px 5px;border-radius: 4px;">json.loads()进程序,省时省力。

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;padding-left: 8px;color: rgb(63, 63, 63);">如何引导模型输出 JSON?

关键在于提示词设计(prompt engineering)。我们需要在 prompt 中明确告诉模型两点:

  1. 1. 输出必须是合法的 JSON;
  2. 2. 给出清晰的字段定义和格式示例。

下面是一个典型的 prompt 示例:

请根据以下用户评论判断其情感倾向,并以 JSON 格式返回结果,包含两个字段:"sentiment"(取值为 "positive"、"negative" 或 "neutral")和 "confidence"(0 到 1 之间的浮点数)。只输出 JSON,不要添加其他说明。

评论内容:这个产品真的很不错,用起来很顺手。

注意这里的几个关键词:“以 JSON 格式返回”、“包含两个字段”、“只输出 JSON”。这些约束条件能有效引导模型进入“结构化输出”模式。

Python 实践示例

我们来看一个简单的 Python 脚本,调用 OpenAI 的 API 实现上述功能(当然,也可以适配其他支持 function calling 或结构化输出的模型,如 Anthropic、通义千问等)。

importopenai
importjson

# 设置 API Key(请替换为你的实际密钥)
openai.api_key ="your-api-key"

defget_sentiment(text):
prompt =f"""
请分析以下评论的情感倾向,并返回 JSON 格式的结果,字段包括:
- "sentiment": 取值为 "positive", "negative", 或 "neutral"
- "confidence": 浮点数,表示判断的置信度(0-1)

要求:
1. 输出必须是合法的 JSON
2. 不要包含任何额外说明或格式符号
3. 只返回 JSON 对象

评论内容:{text}
"""

response = openai.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role":"user","content": prompt}
],
temperature=0.3# 降低随机性,提高输出稳定性
)

raw_output = response.choices[0].message.content.strip()
try:
result = json.loads(raw_output)
returnresult
exceptjson.JSONDecodeError:
print(f"JSON 解析失败:{raw_output}")
returnNone

# 测试
comment ="这个手机电池很耐用,拍照也清楚。"
result = get_sentiment(comment)
print(result)
# 输出示例:{'sentiment': 'positive', 'confidence': 0.95}

这段代码虽然简单,但在实际项目中非常实用。通过控制temperature参数,我们可以进一步提升 JSON 输出的稳定性。

常见问题与应对策略

在实际使用中,我们发现模型偶尔会输出非法 JSON,比如缺少引号、使用单引号、或多出解释文字。对此,有几种缓解方法:

  1. 1.后处理校验与修复:可以用json.loads()包裹,并配合正则或第三方库(如json-repair)尝试自动修复。
  2. 2.使用支持结构化输出的 API:例如 OpenAI 的response_format={"type": "json_object"}参数(需启用gpt-4-turbo或更新模型),能强制模型输出合法 JSON。
  3. 3.提供更明确的示例(few-shot prompting):在 prompt 中加入一两个输入输出对,帮助模型理解格式要求。

例如:

评论:服务态度很差,等了两个小时。
{"sentiment": "negative", "confidence": 0.98}

评论:还可以吧,不算好也不算差。
{"sentiment": "neutral", "confidence": 0.75}

评论:这个功能太棒了,完全超出预期!

模型往往会模仿这种格式继续输出。

适用场景与局限性

JSON 提示特别适合以下场景:

  • • 信息抽取(如从简历中提取姓名、电话、技能)
  • • 表单生成(根据描述生成配置项)
  • • 分类打标(多标签分类结果结构化输出)
  • • Agent 系统中的工具调用参数生成

但也有一些局限需要注意:

  • • 模型在复杂嵌套结构下可能出错,建议结构不要太深;
  • • 某些小模型对 JSON 格式理解能力较弱,效果不如大模型稳定;
  • • 字段名称应尽量使用英文,避免中文 key 导致解析问题(虽然合法,但部分系统不友好)。

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

链载AI是专业的生成式人工智能教程平台。提供Stable Diffusion、Midjourney AI绘画教程,Suno AI音乐生成指南,以及Runway、Pika等AI视频制作与动画生成实战案例。从提示词编写到参数调整,手把手助您从入门到精通。
  • 官方手机版

  • 微信公众号

  • 商务合作

  • Powered by Discuz! X3.5 | Copyright © 2025-2025. | 链载Ai
  • 桂ICP备2024021734号 | 营业执照 | |广西笔趣文化传媒有限公司|| QQ