返回顶部
热门问答 更多热门问答
技术文章 更多技术文章

OpenAI 开源模型泄露:六大技术细节

[复制链接]
链载Ai 显示全部楼层 发表于 昨天 21:52 |阅读模式 打印 上一主题 下一主题



ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 15px;letter-spacing: 0.1em;color: rgb(63, 63, 63);">OpenAI 可能即将发布的开源大模型的详细技术细节来了,以下是根据泄露信息整理

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 15px;letter-spacing: 0.1em;color: rgb(63, 63, 63);">

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;padding-left: 8px;color: rgb(63, 63, 63);">模型架构:1200亿参数的混合专家模型(MoE)

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 15px;letter-spacing: 0.1em;color: rgb(63, 63, 63);">据爆料,OpenAI 可能会发布两款模型:

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 15px;letter-spacing: 0.1em;color: rgb(63, 63, 63);">一款 1200亿(120B)参数的混合专家(MoE)模型:其在推理时仅激活约 50-60亿(5B/6B)参数。这意味着它能在保持巨大知识容量的同时,实现极高的推理效率,大幅降低运行成本

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 15px;letter-spacing: 0.1em;color: rgb(63, 63, 63);">一款 200亿(20B)参数的稠密模型:作为更小巧、更易于部署的版本

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 15px;letter-spacing: 0.1em;color: rgb(63, 63, 63);">目前来看,这两款模型将专注于文本处理,暂时不涉及多模态能力

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;padding-left: 8px;color: rgb(63, 63, 63);">训练技术:或采用 Float4 与 英伟达最新Blackwell 芯片

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 15px;letter-spacing: 0.1em;color: rgb(63, 63, 63);">为了极致的效率,模型可能采用了 Float4进行训练或量化。这是一种非常激进的量化方案,可以极大地压缩模型体积并提升运算速度

ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 15px;letter-spacing: 0.1em;color: rgb(63, 63, 63);">据推测,这可能是借助英伟达最新发布的 Blackwell 架构 GPU 完成的,因为该系列芯片原生支持 Float4 运算。另一种可能性是,模型在训练后通过 训练后量化(PTQ) 技术压缩到了 Float4

激活函数:带范围限制的 SwiGLU

为了配合 Float4 量化,模型可能采用了 SwiGLU 激活函数,并对其输出范围进行了 裁剪,限制在-7 到 7之间

这类似于经典的 ReLU6 函数,其目的是为了消除激活值中的极端异常值,确保数值分布更稳定,从而降低量化过程中带来的精度损失。这对于 Float4 这种低精度格式至关重要

上下文窗口:通过 YaRN 技术扩展至 128K

模型将拥有128K 的超长上下文窗口,但它并非从头开始训练的。据推测,该模型的基础上下文窗口为 4K,之后在训练中途采用 YaRN等技术将其无缝扩展至 128K

注意力机制:滑动窗口注意力(SWA)与注意力汇聚(Attention Sinks)

为了高效处理 128K 的长文本,模型采用了两大关键技术:

滑动窗口注意力(SWA):窗口大小为 128。这意味着在计算注意力时,每个词元(token)只需关注其邻近的 128 个词元,从而将计算复杂度从二次方降低到线性级别

注意力汇聚(Attention Sinks):为了解决 SWA 会遗忘早期重要信息的问题,模型引入了注意力汇聚技术。该技术强制模型始终关注最开始的几个(例如 4 或 8 个)关键 token,确保模型在处理长序列时不会失忆。NVIDIA 的 TensorRT-LLM 也已支持此功能

底层架构:融合 Llama/Mixtral 特点并使用偏置项

模型的基础架构很可能借鉴了 Llama 和 Mixtral 等成功的开源模型。关键特征包括:

合并的 QKV 矩阵:将注意力机制中的查询(Q)、键(K)、值(V)矩阵合并,以优化计算效率

广泛使用偏置项(Biases):与一些模型(如 Llama)去掉偏置项的做法不同,该模型似乎在所有模块(包括 MLP、注意力层甚至 MoE 的路由层)都保留了偏置项,这可能有助于提升模型的拟合能力

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

链载AI是专业的生成式人工智能教程平台。提供Stable Diffusion、Midjourney AI绘画教程,Suno AI音乐生成指南,以及Runway、Pika等AI视频制作与动画生成实战案例。从提示词编写到参数调整,手把手助您从入门到精通。
  • 官方手机版

  • 微信公众号

  • 商务合作

  • Powered by Discuz! X3.5 | Copyright © 2025-2025. | 链载Ai
  • 桂ICP备2024021734号 | 营业执照 | |广西笔趣文化传媒有限公司|| QQ