返回顶部
热门问答 更多热门问答
技术文章 更多技术文章

🤯 终于搞懂了!LLM、RAG 和 AI Agents 到底是什么关系?

[复制链接]
链载Ai 显示全部楼层 发表于 昨天 22:34 |阅读模式 打印 上一主题 下一主题


别再用错了!2年AI实战经验揭秘:真正的生产级AI系统是这样搭的!


在深度参与 AI 生产系统建设两年之后,我发现一个巨大的误区:很多人还在纠结LLM、RAG 和 AI Agents哪个更厉害?

大错特错!它们根本不是竞争关系,而是同一个智能堆栈中的三个“层级”!只有把它们的关系理顺了,才能真正搭建出有价值的 AI 应用。

下面,我用最简单的方式,拆解这三者在 AI 系统中的核心作用:

🧠 第一层:LLM - 智慧的大脑 (The Brain)

核心能力:推理、写作、语言理解。

  • 它的优点:
    LLM(大语言模型)就是那个能思考、会说话的“天才大脑”。它拥有强大的逻辑推理和语言生成能力。
  • 它的缺点:
    它是“活在过去”的。比如 GPT-4,它对训练截止日期之后的事情一无所知。如果你问它“昨天发生的大新闻”,它就会毫不犹豫地带你走进“幻觉之城”。
总结:
LLM 擅长思考 (Thinking),但对于实时和最新的信息却是“盲人”。

💾 第二层:RAG - 永不遗忘的记忆系统 (The Memory)

核心能力:提供实时、准确的知识上下文。

  • 它的作用:
    RAG(检索增强生成)系统就像一个**“记忆中枢”,它将那个“停滞的大脑”连接到了鲜活的知识世界**。
  • 它的工作原理:
    当你提问时,RAG 会立即搜索外部或内部的数据库,找到最相关的文档片段,然后把这些**新鲜的、真实的数据作为“上下文”**喂给 LLM。
  • 带来的变革:
    模型瞬间从静态变得动态。它不再是基于训练数据猜测答案,而是基于检索到的真实信息进行推理。准确度立即飙升,且无需重新训练模型!更重要的是,你可以轻松审计(Audit)答案来自哪份文件,可信度极高。
总结:
RAG 负责知晓 (Knowing),让 AI 从“聪明”变得**“准确”**。

⚙️ 第三层:AI Agents - 决策与行动的执行者 (The Decision-Makers)

核心能力:感知、规划、行动、执行复杂工作流。

  • 它的超越:
    LLM 只能思考,RAG 只能告知,但两者都无法付诸行动。而AI Agents(人工智能体)就是那个“行动派”。
  • 它的机制:
    Agent 在 LLM 外层套上了一个**“控制循环”。它能感知目标,规划步骤,执行动作,并对结果进行反思和修正**。
  • 它的价值:
    Agent 不仅仅是回答问题,它可以自主地完成一整套流程:研究一个复杂课题、拉取多方数据、合成一份完整的报告,甚至自动发送邮件!
总结:
Agents 致力于行动 (Doing),赋予 AI“自主权”

🚀 生产级 AI 系统的真正架构秘诀

现在你知道了,AI 的未来不是在三者中“三选一”,而在于如何将它们有机地整合起来!

大多数炫酷的 AI 演示,可能只是一个提示词写得好的 LLM。但真正的生产级系统,一定是三层堆栈的完美结合:

场景需求
采用的技术层
核心价值
纯语言任务
(写作、总结、解释)
只用 LLM
强大的推理和生成能力
追求准确性
(回答内部文档、技术手册)
LLM + RAG
基于最新、真实数据回答
实现自主工作流
(决策、行动、管理复杂任务)
LLM + RAG + Agents
高度自主和自动化

这就是实际的智能堆栈

LLMs for thinking. (用于思考)

RAG for knowing. (用于知晓)

Agents for doing. (用于行动)

如果你正在搭建或使用 AI 系统,请立即检查你的架构,看看是否真正用好了这三个层级!

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

链载AI是专业的生成式人工智能教程平台。提供Stable Diffusion、Midjourney AI绘画教程,Suno AI音乐生成指南,以及Runway、Pika等AI视频制作与动画生成实战案例。从提示词编写到参数调整,手把手助您从入门到精通。
  • 官方手机版

  • 微信公众号

  • 商务合作

  • Powered by Discuz! X3.5 | Copyright © 2025-2025. | 链载Ai
  • 桂ICP备2024021734号 | 营业执照 | |广西笔趣文化传媒有限公司|| QQ