|
ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;margin: 1.5em 8px;letter-spacing: 0.1em;color: rgb(63, 63, 63);">书接上文(【AI Agent】【LangGraph】0. 快速上手:协同LangChain,LangGraph帮你用图结构轻松构建多智能体),前面我们了解了 LangGraph 的概念和基本构造方法,今天我们来看下 LangGraph 构造中的进阶用法:给边加个条件 - 条件分支(Conditional edges)。ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;margin: 1.5em 8px;letter-spacing: 0.1em;color: rgb(63, 63, 63);">LangGraph 构造的是个图的数据结构,有节点(node) 和边(edge),那它的边也可以是带条件的。如何给边加入条件呢?可以通过add_conditional_edges函数添加带条件的边。ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 1.2em;font-weight: bold;display: table;margin: 2em auto 1em;padding-right: 1em;padding-left: 1em;border-bottom: 2px solid rgb(15, 76, 129);color: rgb(63, 63, 63);">1. 完整代码及运行ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;margin: 1.5em 8px;letter-spacing: 0.1em;color: rgb(63, 63, 63);">废话不多说,先上完整代码,和运行结果。先跑起来看看效果再说。ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;overflow-x: auto;border-radius: 8px;padding: 1em;margin: 10px 8px;">fromlangchain_openaiimportChatOpenAI fromlangchain_core.messagesimportHumanMessage,BaseMessage fromlanggraph.graphimportEND,MessageGraph importjson fromlangchain_core.messagesimportToolMessage fromlangchain_core.toolsimporttool fromlangchain_core.utils.function_callingimportconvert_to_openai_tool fromtypingimportList
@tool defmultiply(first_number:int,second_number:int): """Multipliestwonumberstogether.""" returnfirst_number*second_number
model=ChatOpenAI(temperature=0) model_with_tools=model.bind(tools=[convert_to_openai_tool(multiply)])
graph=MessageGraph()
definvoke_model(state ist[BaseMessage]): returnmodel_with_tools.invoke(state)
graph.add_node("oracle",invoke_model)
definvoke_tool(state ist[BaseMessage]): tool_calls=state[-1].additional_kwargs.get("tool_calls",[]) multiply_call=None
fortool_callintool_calls: iftool_call.get("function").get("name")=="multiply": multiply_call=tool_call
ifmultiply_callisNone: raiseException("Noadderinputfound.")
res=multiply.invoke( json.loads(multiply_call.get("function").get("arguments")) )
returnToolMessage( tool_call_id=multiply_call.get("id"), content=res )
graph.add_node("multiply",invoke_tool)
graph.add_edge("multiply",END)
graph.set_entry_point("oracle")
defrouter(state ist[BaseMessage]): tool_calls=state[-1].additional_kwargs.get("tool_calls",[]) iflen(tool_calls): return"multiply" else: return"end"
graph.add_conditional_edges("oracle",router,{ "multiply":"multiply", "end":END, })
runnable=graph.compile()
response=runnable.invoke(HumanMessage("Whatis123*456?")) print(response)ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;margin: 1.5em 8px;letter-spacing: 0.1em;color: rgb(63, 63, 63);">运行结果如下: ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 1.2em;font-weight: bold;display: table;margin: 2em auto 1em;padding-right: 1em;padding-left: 1em;border-bottom: 2px solid rgb(15, 76, 129);color: rgb(63, 63, 63);">2. 代码详解ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;margin: 1.5em 8px;letter-spacing: 0.1em;color: rgb(63, 63, 63);">下面对上面的代码进行详细解释。ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 1.2em;font-weight: bold;display: table;margin: 4em auto 2em;padding-right: 0.2em;padding-left: 0.2em;background: rgb(15, 76, 129);color: rgb(255, 255, 255);">2.1 add_conditional_edgesingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;margin: 1.5em 8px;letter-spacing: 0.1em;color: rgb(63, 63, 63);">首先,我们知道了可以通过add_conditional_edges来对边进行条件添加。这部分代码如下:graph.add_conditional_edges("oracle",router,{ "multiply":"multiply", "end":END, })
add_conditional_edges接收三个参数:
如上面的代码,意思就是往 “oracle” node上添加边,这个node有两条边,一条是往“multiply” node上走,一条是往“END”上走。怎么决定往哪个方向去:条件是 router(后面解释),如果 router 返回的是“multiply”,则往“multiply”方向走,如果 router 返回的是 “end”,则走“END”。 来看下这个函数的源码: defadd_conditional_edges( self, start_key:str, condition:Callable[...,str], conditional_edge_mapping:Optional[Dict[str,str]]=None, )->None: ifself.compiled: logger.warning( "Addinganedgetoagraphthathasalreadybeencompiled.Thiswill" "notbereflectedinthecompiledgraph." ) ifstart_keynotinself.nodes: raiseValueError(f"Needtoadd_node`{start_key}`first") ifiscoroutinefunction(condition): raiseValueError("Conditioncannotbeacoroutinefunction") ifconditional_edge_mappingandset( conditional_edge_mapping.values() ).difference([END]).difference(self.nodes): raiseValueError( f"Missingnodeswhichareinconditionaledgemapping.Mapping" f"containspossibledestinations:" f"{list(conditional_edge_mapping.values())}.Possiblenodesare" f"{list(self.nodes.keys())}." )
self.branches[start_key].append(Branch(condition,conditional_edge_mapping))
重点是这一句:self.branches[start_key].append(Branch(condition, conditional_edge_mapping)),给当前node添加分支Branch。 2.2 条件 router条件代码如下:判断执行结果中是否有 tool_calls 参数,如果有,则返回"multiply",没有,则返回“end”。 defrouter(state ist[BaseMessage]): tool_calls=state[-1].additional_kwargs.get("tool_calls",[]) iflen(tool_calls): return"multiply" else: return"end"
2.3 各node的定义(1)起始node:oracle @tool defmultiply(first_number:int,second_number:int): """Multipliestwonumberstogether.""" returnfirst_number*second_number
model=ChatOpenAI(temperature=0) model_with_tools=model.bind(tools=[convert_to_openai_tool(multiply)])
graph=MessageGraph()
definvoke_model(state ist[BaseMessage]): returnmodel_with_tools.invoke(state)
graph.add_node("oracle",invoke_model)
这个node是一个带有Tools 的 ChatOpenAI。在LangChain中使用Tools的详细教程请看这篇文章:【AI大模型应用开发】【LangChain系列】5. LangChain入门:智能体Agents模块的实战详解。简单解释就是:这个node的执行结果,将返回是否应该使用绑定的Tools。 (2)multiply definvoke_tool(state ist[BaseMessage]): tool_calls=state[-1].additional_kwargs.get("tool_calls",[]) multiply_call=None
fortool_callintool_calls: iftool_call.get("function").get("name")=="multiply": multiply_call=tool_call
ifmultiply_callisNone: raiseException("Noadderinputfound.")
res=multiply.invoke( json.loads(multiply_call.get("function").get("arguments")) )
returnToolMessage( tool_call_id=multiply_call.get("id"), content=res )
graph.add_node("multiply",invoke_tool)
这个node的作用就是执行Tools。 2.4 总体流程
|