返回顶部
热门问答 更多热门问答
技术文章 更多技术文章

对比A100和4090:两者的区别以及适用点

[复制链接]
链载Ai 显示全部楼层 发表于 1 小时前 |阅读模式 打印 上一主题 下一主题

自2022年年末英伟达发布4090芯片以来,这款产品凭借着其优异的性能迅速在科技界占据了一席之地。现如今,不论是在游戏体验、内容创作能力方面还是模型精度提升方面,4090都是一个绕不过去的名字。而A100作为早些发布的产品,其优异的能力和适配性已经为它打下了良好的口碑。RTX 4090芯片和A100芯片虽然都是高性能的GPU,但它们在设计理念、目标市场和性能特点上有着明显的区别,而本篇文章将简单概述两者的区别同时介绍一下二者的特性。

GPU 训练性能和成本对比

虽然A100被称为深度学习神器,但是不一定代表他的性能任何时候都超过其他显卡,A100对标的是RTX 3090,都是Ampere架构的,而RTX 4090作为RTX 3090的升级版,架构是Ada Lovelace,单卡性能至少提升60%以上,RTX 4090在理论上核心性能远强于A100,下面这2个参数对比图也可以很直观的看出2张卡的差距。


RTX 4090与A100的FP16性能比较

根据之前的讨论,RTX 4090的FP16性能约为82.58 Tflops,而A100的FP16性能可达约312 Tflops。不过,随后我们发现实际使用中4090的FP16性能接近于A100。这可能是因为不同的测试条件和使用场景会影响性能测量,或者由于不同的硬件版本和配置。

从理论规格上看,A100确实在FP16上显示出更高的性能,但实际应用性能可能会有所不同,取决于具体任务和软件优化。

结论

既然 4090 单卡训练的性价比这么高,为啥不能用来做大模型训练呢?抛开不允许游戏显卡用于数据中心这样的许可证约束不谈,从技术上讲,根本原因是大模型训练需要高性能的通信。在大模型训练方面,A100比4090表现的更加优秀,但是在推理(inference/serving)方面,选择用4090 芯片不仅可行,在性价比上还能比H100稍高。而如果4090芯片对其进行极致优化,其性价比甚至可以达到H100芯片2倍。



事实上,H100/A1004090最大的区别就在通信和内存上,算力差距不大。


回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

链载AI是专业的生成式人工智能教程平台。提供Stable Diffusion、Midjourney AI绘画教程,Suno AI音乐生成指南,以及Runway、Pika等AI视频制作与动画生成实战案例。从提示词编写到参数调整,手把手助您从入门到精通。
  • 官方手机版

  • 微信公众号

  • 商务合作

  • Powered by Discuz! X3.5 | Copyright © 2025-2025. | 链载Ai
  • 桂ICP备2024021734号 | 营业执照 | |广西笔趣文化传媒有限公司|| QQ