前言在大模型时代中,嵌入(embedding)模型是非常重要且基础的能力,例如在RAG中,匹配问题和知识条文时,好的嵌入模型会让检索更精准。但是通用的嵌入模型,无论其宣传效果有多好,在自己的使用场景中往往会出现水土不服。所以,如何微调嵌入模型,使得匹配自己的业务场景使得尤为重要。本文介绍了使用Sentence Transformers框架对开源的嵌入模型进行微调,使用的Sentence Transformers版本为3.0.0版本。3版本相对2版本发生了重大改变,个人感觉最主要的变化是继承了transformers的很多能力,使得在多卡训练上更方便,这在动辄数百万级的训练样本情况下尤为重要。网上很多教程都是2版本的,在3版本上不适用,请注意。更多的内容请关注官方文档:https://sbert.net/ 1.加载库from datasets import load_dataset from sentence_transformers import ( SentenceTransformer, SentenceTransformerTrainer, SentenceTransformerTrainingArguments, SentenceTransformerModelCardData, ) from sentence_transformers.losses import CoSENTLoss from sentence_transformers.training_args import BatchSamplers
from sentence_transformers.evaluation import BinaryClassificationEvaluator, EmbeddingSimilarityEvaluator, TripletEvaluator import pandas as pd 2.加载模型,设置损失函数# 模型地址:https://huggingface.co/BAAI/bge-small-en-v1.5 model = SentenceTransformer("models/bge-small-en-v1.5/") # 根据不同的数据类型选择不同的损失函数,详见:https://sbert.net/docs/sentence_transformer/loss_overview.html?highlight=loss loss = CoSENTLoss(model) 根据不同的数据类型选择不同的损失函数,详见:https://sbert.net/docs/sentence_transformer/loss_overview.html?highlight=loss ,本案例的场景可选用CoSENTLoss 
3.读取数据# 数据集地址:https://huggingface.co/datasets/sentence-transformers/all-nli,请下载后再加载 train_path = 'data/all-nli/pair-score/train-00000-of-00001.parquet' dev_path = 'data/all-nli/pair-score/dev-00000-of-00001.parquet' test_path = 'data/all-nli/pair-score/test-00000-of-00001.parquet'
train_dataset = load_dataset("parquet", data_files=train_path) eval_dataset = load_dataset("parquet", data_files=dev_path) test_dataset = load_dataset("parquet", data_files=test_path)
print(train_dataset) # train_dataset['train']['premise']才是真正的样本 DatasetDict({ train: Dataset({ features: ['sentence1', 'sentence2', 'score'], num_rows: 942069 }) })我们也可以读取成dataframe的形式,更方便观察数据 df = pd.read_parquet(train_path) df 
可以看见数据为三列的方式,前两列是句子,最后一列是两个句子的相似度评分。如果觉得评分太麻烦,最后一列也可以是0或1的label,但对应的代码需要修改。我们在制作训练集的时候,按照这三列的形式是更方便的。 4.设置训练参数这里是继承了transformers的参数设置,运行的时候会默认机器的卡全部都用于训练。如果要指定某些卡进行训练,需要使用启动命令设置该环境变量,例如:CUDA_VISIBLE_DEVICES="0" python main.py args = SentenceTransformerTrainingArguments( # 必须的参数: output_dir="model_save/pair-class", # 训练参数: num_train_epochs=1, per_device_train_batch_size=16, per_device_eval_batch_size=16, learning_rate=2e-5, warmup_ratio=0.1, fp16=True, bf16=False, batch_sampler=BatchSamplers.NO_DUPLICATES, # 确保同一批批训练样本中没有重复的样本 # 验证/保存参数: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="pair-score", # 设置好名称,可在`wandb`上记录 ) 5.设置验证方式BinaryClassificationEvaluator用于分类标签,EmbeddingSimilarityEvaluator用于分数标签,TripletEvaluator用于句子-正例-负例 本案例适用EmbeddingSimilarityEvaluator 不同的验证方式对应的超参不同,具体参考:https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html?highlight=sentence_transformers%20evaluation
dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=eval_dataset['train']["sentence1"], sentences2=eval_dataset['train']["sentence2"], scores=eval_dataset['train']["score"], name="pair-class-dev", )
# 训练前先测一下 dev_evaluator(model) {'pair-class-dev_pearson_cosine': 0.5586668614994776, 'pair-class-dev_spearman_cosine': 0.5591719112836276, 'pair-class-dev_pearson_manhattan': 0.548648858854572, 'pair-class-dev_spearman_manhattan': 0.555145545980968, 'pair-class-dev_pearson_euclidean': 0.5517466850163146, 'pair-class-dev_spearman_euclidean': 0.5591718680615544, 'pair-class-dev_pearson_dot': 0.5586668602820397, 'pair-class-dev_spearman_dot': 0.5591718350908823, 'pair-class-dev_pearson_max': 0.5586668614994776, 'pair-class-dev_spearman_max': 0.5591719112836276}以上指标都是衡量向量相似度的,等会训练几个周期,看看有没有提升 6.开始训练trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=dev_evaluator, )
trainer.train() 
这里只训练500步,可以看到评价指标是逐渐上升的,训练集的损失函数逐渐下降。验证集的损失函数显示No log,可能是验证方式的原因。 7.测试集效果test_evaluator = EmbeddingSimilarityEvaluator( sentences1=test_dataset['train']["sentence1"], sentences2=test_dataset['train']["sentence2"], scores=test_dataset['train']["score"], name="pair-class-dev", ) test_evaluator(model)
# 保存最终模型 model.save_pretrained("model_save/pair-class/final") {'pair-class-dev_pearson_cosine': 0.6001533384580744, 'pair-class-dev_spearman_cosine': 0.6145674695662575, 'pair-class-dev_pearson_manhattan': 0.5995323301973094, 'pair-class-dev_spearman_manhattan': 0.6124315808477351, 'pair-class-dev_pearson_euclidean': 0.6013774845569113, 'pair-class-dev_spearman_euclidean': 0.6145674696825638, 'pair-class-dev_pearson_dot': 0.6001533367553711, 'pair-class-dev_spearman_dot': 0.6145674475881859, 'pair-class-dev_pearson_max': 0.6013774845569113, 'pair-class-dev_spearman_max': 0.6145674696825638}可以看到,进行少量训练后,指标是有所提高的 |