正确的标题检测结果输出与文档树构建对数据质量有重要的提升作用,对后续数据清洗、大模型语义理解与RAG开发应用场景意义尤为明显。
简单来说,当AI对长文档进行检索与理解,清晰的标题及层级识别,能帮助机器快速读取全文的逻辑结构,并锚定我们希望查找或归纳的信息位置。不论我们需要LLM帮助快速阅读、生成摘要,还是提取细节内容,标题目录都能起到重要作用。
以RAG(Retrieval-Augmented Generation)这一主要场景为例,在系统开发过程中,Chunking(分块)对整体性能有着显著的影响。RAG在进行信息检索的时候需要将检索出来的有价值的文本段送给模型,模型才能生成可靠有用的内容。分块是将整篇文本分成小段的过程,当我们使用LLM embedding内容时,分块可以帮助优化从向量数据库被召回的内容的准确性,因此文本段的质量也是RAG中比较重要的一环。良好的分块能够减少计算资源的消耗,提高检索效率,并提升生成质量。