
Photo by Alina Grubnyak[4] on Unsplash[2]
接下来,让我们更细致地探讨 GraphRAG 的概念,并通过与 RAG 的对比,以易于理解的方式来揭示其工作原理。
首先,我们设想一个由各种科学和历史文献中的句子构成的知识库,内容如下:
utside;">“阿尔伯特·爱因斯坦提出了相对论,这一理论颠覆了理论物理学和天文学。”
“相对论提出于 20 世纪初期,它极大地深化了我们对宇宙空间和时间本质的理解。”
“以运动定律和万有引力定律著称的牛顿为经典力学奠定了基础。”
“1915 年,爱因斯坦在原有狭义相对论的基础上,进一步提出了广义相对论。”
“牛顿在 17 世纪的研究成果,为现代物理学的发展打下了坚实的基础。”
在 RAG 系统中,上述句子将作为非结构化文本存储。例如,当询问“17 世纪的科学成就如何影响 20 世纪初的物理学?”时,如果文档的内容和检索质量不能将 17 世纪的影响与 20 世纪早期的物理学直接联系起来,系统就会陷入困境。它可能只能提供如下答案:“牛顿在 17 世纪的研究工作为现代物理学的大部分内容奠定了基础。阿尔伯特·爱因斯坦在 20 世纪初提出了相对论。”这是因为 RAG 能够检索到相关信息,但却难以清晰地阐释 17 世纪物理学对 20 世纪初物理学发展的具体影响。
与此相反,GraphRAG 将这些文本转换成结构化的知识图谱。知识图谱展现了不同实体间的相互关系,并通过一套规则来组织信息,这样就能揭示出那些不那么明显的联系。
借助 GraphRAG 系统,先前的知识库将转变为一组节点和边的关系,具体如下。


面对“17世纪的科学成就如何影响20世纪初的物理学?”这一问题,基于 GraphRAG 的检索器能够追溯从牛顿的理论到爱因斯坦的成就之间的演变,清晰地展示了 17 世纪物理学对 20 世纪初物理学发展的深刻影响。这种结构化的信息检索使得答案不仅内容丰富,而且精确到位:“牛顿在 17 世纪提出的运动定律和万有引力定律,为经典力学的发展奠定了基石。这些基本原理对阿尔伯特·爱因斯坦在 20 世纪初发展相对论产生了重要影响,相对论进一步拓展了我们对宇宙空间和时间的认识。”
GraphRAG 通过运用结构化知识图谱,提升了模型处理复杂问题的能力,并通过提供明确定义的关系作为答案的基础,降低了产生“幻觉”的可能性。这种做法实质上使得 GraphRAG 在开发更可靠、更智能的对话式问答系统时更加有效。
将非结构化的知识库转化为结构化的知识图谱,使得 GraphRAG 能够深入理解信息内涵,从而使语言模型能够根据上下文生成准确恰当的回答。这是对话式 AI 朝着更先进、更可靠的聊天机器人系统发展的重要一步。
然而,正如 GraphRAG 带来的其他优势一样,它也面临着一些挑战。
首先,构建知识图谱是一个极其复杂的过程。将无序的知识库转换为结构化的知识图谱需要精细的实体提取(entity extraction)和关系识别方法(identification of relationships),而这些方法的计算成本可能非常高昂。
其次,可扩展性问题也随之出现。随着知识库规模的扩大,知识图谱的复杂性也在增加。如果知识图谱变得过大,以至于在运行时难以遍历,那么可能会带来可扩展性问题。对于大规模知识图谱,优化知识图谱检索算法将成为一个主要挑战。
再者,知识图谱的维护成本也是一个问题。知识图谱需要根据新信息和现有数据的变化不断更新。在一些很可能经常变化的领域,这可能会成为一项非常昂贵的工作,尤其是在技术或医学领域。这意味着,尽管结果可能很有前景,但要长期保持知识图谱的正确性和相关性,还需要付出大量的努力。
尽管如此,GraphRAG 仍有望为未来的对话式 AI Agents 带来了更高的智能程度、可靠性和上下文感知能力。更多的研究和开发工作可以帮助解决与 GraphRAG 相关的一些困难,从而为构建更先进、更智能的人工智能驱动的解决方案铺平道路。