ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 14px;letter-spacing: 0.1em;color: rgb(63, 63, 63);"> 今天想和大家聊一个在实际项目中越来越常见、但又容易被忽视的技术细节——JSON 提示(JSON Prompting)。ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 14px;letter-spacing: 0.1em;color: rgb(63, 63, 63);"> 在我们日常与大语言模型(LLM)打交道的过程中,往往希望模型不仅能“说人话”,还能输出结构清晰、便于程序解析的结果。尤其是在构建自动化系统、API 接口或数据抽取流程时,纯文本的自由输出常常带来后续处理的麻烦。这时候,ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: inherit;color: rgb(0, 152, 116);">让模型直接输出 JSON 格式的数据,就成了一种非常实用的技巧。ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;padding-left: 8px;color: rgb(63, 63, 63);">为什么选择 JSON 提示?ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 14px;letter-spacing: 0.1em;color: rgb(63, 63, 63);"> 从工程实践的角度来看,JSON 是目前最通用的结构化数据交换格式之一。它轻量、易读、支持嵌套,且几乎所有编程语言都原生支持解析。当我们希望 LLM 输出字段明确的结果(比如提取信息、生成配置、分类打标等),使用 JSON 格式能显著降低后处理成本。ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 14px;letter-spacing: 0.1em;color: rgb(63, 63, 63);"> 举个简单的例子:如果我们让模型判断一段文本的情感倾向,并返回类别和置信度。如果输出是“情感是正面的,我觉得挺有信心的”,那我们需要再写规则去提取;但如果输出是:ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-feature-settings: normal;font-variation-settings: normal;font-size: 14px;margin: 10px 8px;color: rgb(201, 209, 217);background: rgb(13, 17, 23);text-align: left;line-height: 1.5;overflow-x: auto;border-radius: 8px;padding: 0px !important;">{ "sentiment":"positive", "confidence":0.93 }ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 14px;letter-spacing: 0.1em;color: rgb(63, 63, 63);"> 那就可以直接ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-feature-settings: normal;font-variation-settings: normal;font-size: 12.6px;text-align: left;line-height: 1.75;color: rgb(221, 17, 68);background: rgba(27, 31, 35, 0.05);padding: 3px 5px;border-radius: 4px;">json.loads()进程序,省时省力。ingFang SC", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;padding-left: 8px;color: rgb(63, 63, 63);">如何引导模型输出 JSON? 关键在于提示词设计(prompt engineering)。我们需要在 prompt 中明确告诉模型两点:
下面是一个典型的 prompt 示例: 请根据以下用户评论判断其情感倾向,并以 JSON 格式返回结果,包含两个字段:"sentiment"(取值为 "positive"、"negative" 或 "neutral")和 "confidence"(0 到 1 之间的浮点数)。只输出 JSON,不要添加其他说明。 评论内容:这个产品真的很不错,用起来很顺手。
注意这里的几个关键词:“以 JSON 格式返回”、“包含两个字段”、“只输出 JSON”。这些约束条件能有效引导模型进入“结构化输出”模式。 Python 实践示例 我们来看一个简单的 Python 脚本,调用 OpenAI 的 API 实现上述功能(当然,也可以适配其他支持 function calling 或结构化输出的模型,如 Anthropic、通义千问等)。 importopenai importjson
# 设置 API Key(请替换为你的实际密钥) openai.api_key ="your-api-key"
defget_sentiment(text): prompt =f""" 请分析以下评论的情感倾向,并返回 JSON 格式的结果,字段包括: - "sentiment": 取值为 "positive", "negative", 或 "neutral" - "confidence": 浮点数,表示判断的置信度(0-1)
要求: 1. 输出必须是合法的 JSON 2. 不要包含任何额外说明或格式符号 3. 只返回 JSON 对象
评论内容:{text} """
response = openai.chat.completions.create( model="gpt-3.5-turbo", messages=[ {"role":"user","content": prompt} ], temperature=0.3# 降低随机性,提高输出稳定性 )
raw_output = response.choices[0].message.content.strip() try: result = json.loads(raw_output) returnresult exceptjson.JSONDecodeError: print(f"JSON 解析失败:{raw_output}") returnNone
# 测试 comment ="这个手机电池很耐用,拍照也清楚。" result = get_sentiment(comment) print(result) # 输出示例:{'sentiment': 'positive', 'confidence': 0.95}
这段代码虽然简单,但在实际项目中非常实用。通过控制temperature参数,我们可以进一步提升 JSON 输出的稳定性。 常见问题与应对策略 在实际使用中,我们发现模型偶尔会输出非法 JSON,比如缺少引号、使用单引号、或多出解释文字。对此,有几种缓解方法: - 1.后处理校验与修复:可以用
json.loads()包裹,并配合正则或第三方库(如json-repair)尝试自动修复。 - 2.使用支持结构化输出的 API:例如 OpenAI 的
response_format={"type": "json_object"}参数(需启用gpt-4-turbo或更新模型),能强制模型输出合法 JSON。 - 3.提供更明确的示例(few-shot prompting):在 prompt 中加入一两个输入输出对,帮助模型理解格式要求。
例如: 评论:服务态度很差,等了两个小时。 {"sentiment": "negative", "confidence": 0.98}
评论:还可以吧,不算好也不算差。 {"sentiment": "neutral", "confidence": 0.75}
评论:这个功能太棒了,完全超出预期!
模型往往会模仿这种格式继续输出。 适用场景与局限性 JSON 提示特别适合以下场景: 但也有一些局限需要注意: - • 模型在复杂嵌套结构下可能出错,建议结构不要太深;
- • 某些小模型对 JSON 格式理解能力较弱,效果不如大模型稳定;
- • 字段名称应尽量使用英文,避免中文 key 导致解析问题(虽然合法,但部分系统不友好)。
|