ingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.578px;margin-top: 0px;margin-bottom: 0px;font-size: 22px;padding-bottom: 12px;">序ingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;color: rgb(31, 35, 41);margin: 0px 0px 4px;word-break: break-all;min-height: 20px;">最近正好在研究RAG,虽然RAG有很多问题被诟病,但预计未来三年仍然是构建Agent扩展知识库的关键技术,RAG的问题也会逐一被弥补或完善,就像MAS的问题目前最佳解法是构建个性化的Context engineering一样。ingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;color: rgb(31, 35, 41);margin: 0px 0px 4px;word-break: break-all;min-height: 20px;">本文记录构建Agentic RAG系统的过程,结合了LangChain (文档处理), LangGraph (Agent流程控制), Google Gemini (LLM) 和Qdrant向量数据库,这个智能问答系统,能够自动判断是否需要重写查询、检索更多内容或直接回答问题。ingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;color: rgb(31, 35, 41);margin: 0px 0px 4px;word-break: break-all;min-height: 20px;">MAS = Multi-agent system 中文名称是多智能体系统,RAG是一种给LLM提供训练语料外数据或实时检索数据能力的技术,旨在提升LLM的智能程度。建议在了解这两个名词的5W1H之后再阅读本文,MAS和RAG可以查阅公众号往期文章。ingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.578px;margin-top: 0px;margin-bottom: 0px;font-size: 22px;padding-bottom: 12px;">代码架构概述ingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;color: rgb(31, 35, 41);margin: 0px 0px 4px;word-break: break-all;min-height: 20px;">建议结合代码阅读,GitHub repo链接:https://github.com/KatnissStoa/RAG_blog_chat.gitingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;color: rgb(31, 35, 41);margin: 0px 0px 4px;word-break: break-all;min-height: 20px;">代码仓库核心功能概述:ingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;font-size: 15px;line-height: 30px;padding-left: 20px;" class="list-paddingleft-1">文档加载:使用WebBaseLoader从博客 URL 抓取 HTML 内容文本分块:使用RecursiveCharacterTextSplitter将长文分割为语义段落,按段落/句子/词递归切分向量化:使用 Google Gemini 的embedding-001模型生成文本嵌入,即将文本块转为向量向量存储:使用 Qdrant 存储嵌入向量,支持快速高效的语义相似度检索Agentic 查询处理:使用 LangGraph 构建的智能代理,动态决定是否需要重写查询或继续检索相关性评分:使用 Gemini 对检索结果进行自动打分,过滤低质量内容用户界面:使用 Streamlit 构建交互式 Web 界面,支持输入博客链接和提问ingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.578px;margin-top: 8px;margin-bottom: 0px;font-size: 22px;padding-bottom: 12px;">代码详解ingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;color: rgb(31, 35, 41);margin: 0px 0px 4px;word-break: break-all;min-height: 20px;">用Steamlit构建UI界面,要求使用者输入三个内容:Qdrant数据库地址、Qdrant Key、Google Gemini APIKey,准备好资源才能使用RAG功能。defset_sidebar(): """Setup sidebar for API keys and configuration.""" withst.sidebar: st.subheader("API Configuration") qdrant_host = st.text_input("Enter your Qdrant Host URL:",type="password") qdrant_api_key = st.text_input("Enter your Qdrant API key:",type="password") gemini_api_key = st.text_input("Enter your Gemini API key:",type="password")
ifst.button("Done"): ifqdrant_hostandqdrant_api_keyandgemini_api_key: st.session_state.qdrant_host = qdrant_host st.session_state.qdrant_api_key = qdrant_api_key st.session_state.gemini_api_key = gemini_api_key st.success("API keys saved!") else: st.warning("Please fill all API fields")
grade_documents 用 Gemini 对「用户提问」和「搜索结果/资料」进行相似度判断,LLM只能回答 yes / no,若为 yes 则走 generate 把问题和资料一起给LLM写一段简洁准确的回复输出给用户,若为 no 则重新搜索,重新检索前LLM会把用户原问题改写成更贴切、更好搜索的内容。 # LLM model = ChatGoogleGenerativeAI(api_key=st.session_state.gemini_api_key, temperature=0, model="gemini-2.0-flash", streaming=True)
# LLM with tool and validation llm_with_tool = model.with_structured_output(grade)
# Prompt prompt = PromptTemplate( template="""You are a grader assessing relevance of a retrieved document to a user question. \n Here is the retrieved document: \n\n {context} \n\n Here is the user question: {question} \n If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. \n Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.""", input_variables=["context","question"], )
# Chain chain = prompt | llm_with_tool
messages = state["messages"] last_message = messages[-1]
question = messages[0].content docs = last_message.content
scored_result = chain.invoke({"question": question,"context": docs})
score = scored_result.binary_score
ifscore =="yes": print("---DECISION: DOCS RELEVANT---") return"generate"
else: print("---DECISION: DOCS NOT RELEVANT---") print(score) return"rewrite"
在 main 函数里,会把上述所有流程走一遍,首先check Qdrant地址和key & Gemini api key,将博客内容全文抓取下来,用 embedding_model 变为向量,切成 chunk 并配好编号 UUID,连接 Qdrant 存入 chunk 内容,成功的内容显示绿色,失败的显示红色。当用户Query输入后,LLM 判断数据库中是否有相似内容,若有则将问题和内容合并生成简洁回复显示在网页上,若无则改写问题重新检索,最多改写一次,查不到就结束,不会无限循环,节省 token 和时间消耗。 defmain(): set_sidebar()
# Check if API keys are set ifnotall([st.session_state.qdrant_host, st.session_state.qdrant_api_key, st.session_state.gemini_api_key]): st.warning("Please configure your API keys in the sidebar first") return
# Initialize components embedding_model, client, db = initialize_components() ifnotall([embedding_model, client, db]): return
# Initialize retriever and tools retriever = db.as_retriever(search_type="similarity", search_kwargs={"k":5}) retriever_tool = create_retriever_tool( retriever, "retrieve_blog_posts", "Search and return information about blog posts on LLMs, LLM agents, prompt engineering, and adversarial attacks on LLMs.", ) tools = [retriever_tool]
# URL input section url = st.text_input( ":link: Paste the blog link:", placeholder="e.g., https://lilianweng.github.io/posts/2023-06-23-agent/" ) ifst.button("Enter URL"): ifurl: withst.spinner("Processing documents..."): ifadd_documents_to_qdrant(url, db): st.success("Documents added successfully!") else: st.error("Failed to add documents") else: st.warning("Please enter a URL")
# Query section graph = get_graph(retriever_tool) query = st.text_area( ":bulb: Enter your query about the blog post:", placeholder="e.g., What does Lilian Weng say about the types of agent memory?" )
ifst.button("Submit Query"): ifnotquery: st.warning("Please enter a query") return
inputs = {"messages": [HumanMessage(content=query)]} withst.spinner("Generating response..."): try: response = generate_message(graph, inputs) st.write(response) exceptExceptionase: st.error(f"Error generating response:{str(e)}")
st.markdown("---") st.write("Built with :blue-background[LangChain] | :blue-background[LangGraph] by [Charan](https://www.linkedin.com/in/codewithcharan/)")
if__name__ =="__main__": main()
|