|
ingFang SC", "Hiragino Sans GB", "Droid Sans Fallback", "Microsoft YaHei", sans-serif;letter-spacing: normal;text-align: start;background-color: rgb(255, 255, 255);">LightRAG是一个用于处理知识图谱和向量数据库的框架,主要用于信息检索和知识管理。以下是对其核心组件、功能和流程的全面解析。ingFang SC", "Hiragino Sans GB", "Droid Sans Fallback", "Microsoft YaHei", sans-serif;font-size: 17px;letter-spacing: normal;text-align: start;background-color: rgb(255, 255, 255); ">1. 核心组件ingFang SC", "Hiragino Sans GB", "Droid Sans Fallback", "Microsoft YaHei", sans-serif;letter-spacing: normal;text-align: start;background-color: rgb(255, 255, 255);" class="list-paddingleft-1"> LightRAG 类: 存储类: JsonKVStorage: 用于存储键值对数据。 NanoVectorDBStorage: 用于存储向量数据,支持高效的相似性查询。 NetworkXStorage: 用于图形数据存储,支持图形操作。
查询参数: ingFang SC", "Hiragino Sans GB", "Droid Sans Fallback", "Microsoft YaHei", sans-serif;font-size: 17px;letter-spacing: normal;text-align: start;background-color: rgb(255, 255, 255); ">2. 主要功能ingFang SC", "Hiragino Sans GB", "Droid Sans Fallback", "Microsoft YaHei", sans-serif;letter-spacing: normal;text-align: start;background-color: rgb(255, 255, 255);" class="list-paddingleft-1">关键词提取: 上下文构建: 信息提取: 查询执行: ingFang SC", "Hiragino Sans GB", "Droid Sans Fallback", "Microsoft YaHei", sans-serif;font-size: 17px;letter-spacing: normal;text-align: start;background-color: rgb(255, 255, 255); ">3. 查询流程ingFang SC", "Hiragino Sans GB", "Droid Sans Fallback", "Microsoft YaHei", sans-serif;letter-spacing: normal;text-align: start;background-color: rgb(255, 255, 255);" class="list-paddingleft-2">接收查询: 关键词提取: 上下文构建: 生成响应: 存储和更新: ingFang SC", "Hiragino Sans GB", "Droid Sans Fallback", "Microsoft YaHei", sans-serif;letter-spacing: normal;text-align: start;background-color: rgb(255, 255, 255); ">aquery方法解析ingFang SC", "Hiragino Sans GB", "Droid Sans Fallback", "Microsoft YaHei", sans-serif;letter-spacing: normal;text-align: start;background-color: rgb(255, 255, 255);">aquery方法是LightRAG类中的一个异步方法,负责处理用户的查询请求。它根据传入的查询参数选择不同的查询模式,并调用相应的查询函数。以下是对该方法及其关联代码的详细解析。ingFang SC", "Hiragino Sans GB", "Droid Sans Fallback", "Microsoft YaHei", sans-serif;font-size: 17px;letter-spacing: normal;text-align: start;background-color: rgb(255, 255, 255); ">方法定义asyncdefaquery(self,query:str,param ueryParam=QueryParam()): Copy -参数: 方法流程查询模式选择: local: 调用本地查询函数local_query。 global: 调用全局查询函数global_query。 hybrid: 调用混合查询函数hybrid_query。 naive: 调用简单查询函数naive_query。 如果param.mode的值不在上述选项中,抛出ValueError。 根据param.mode的值,选择不同的查询方式:
调用查询函数: 完成查询后处理:
关联代码以下是与aquery方法相关的代码片段: 1.查询模式的实现: 3.查询完成处理: awaitself._query_done() Copy
hybrid_query方法解析hybrid_query方法是LightRAG框架中的一个异步函数,旨在结合本地和全局上下文来处理用户的查询。它通过提取关键词并构建相应的上下文,最终生成一个响应。以下是对该方法的详细解析: 方法定义async def hybrid_query(
query,
knowledge_graph_inst: BaseGraphStorage,
entities_vdb: BaseVectorStorage,
relationships_vdb: BaseVectorStorage,
text_chunks_db: BaseKVStorage[TextChunkSchema],
query_param: QueryParam,
global_config: dict,
) -> str:
Copy 参数: query: 用户输入的查询字符串。 knowledge_graph_inst: 知识图谱的实例,提供图形存储和查询功能。 entities_vdb: 存储实体的向量数据库实例。 relationships_vdb: 存储关系的向量数据库实例。 text_chunks_db: 存储文本块的键值存储实例。 query_param: 查询参数,包含查询的配置(如模式、返回类型等)。 global_config: 全局配置字典,包含模型函数和其他设置。
方法流程初始化上下文: 关键词提取: 解析关键词: 构建上下文: 合并上下文: 返回上下文或生成响应: 处理响应:
hybrid 查询流程详解关键词提取query:自建组合的分红方式 通过提示词: ---Role---
You are a helpful assistant tasked with identifying both high-level and low-level keywords in the user's query.
---Goal---
Given the query, list both high-level and low-level keywords. High-level keywords focus on overarching concepts or themes, while low-level keywords focus on specific entities, details, or concrete terms.
---Instructions---
- Output the keywords in JSON format.- The JSON should have two keys:- "high_level_keywords" for overarching concepts or themes.- "low_level_keywords" for specific entities or details.
######################-Examples-######################Example 1:
Query: "How does international trade influence global economic stability?"################Output:{"high_level_keywords": ["International trade", "Global economic stability", "Economic impact"],"low_level_keywords": ["Trade agreements", "Tariffs", "Currency exchange", "Imports", "Exports"]}#############################Example 2:
Query: "What are the environmental consequences of deforestation on biodiversity?"################Output:{"high_level_keywords": ["Environmental consequences", "Deforestation", "Biodiversity loss"],"low_level_keywords": ["Species extinction", "Habitat destruction", "Carbon emissions", "Rainforest", "Ecosystem"]}#############################Example 3:
Query: "What is the role of education in reducing poverty?"################Output:{"high_level_keywords": ["Education", "Poverty reduction", "Socioeconomic development"],"low_level_keywords": ["School access", "Literacy rates", "Job training", "Income inequality"]}#############################-Real Data-######################Query: 自建组合的分红方式######################Output:
Copy 从模型获取到如下数据: { "high_level_keywords": ["自建组合", "分红方式"], "low_level_keywords": ["投资策略", "收益分配", "股票组合", "财务管理"] }
Copy 关键词检索分别用关键词调用_build_local_query_context 和 _build_global_query_context 方法获取检索内容。 async def _build_local_query_context(query,knowledge_graph_inst: BaseGraphStorage,# 这是一个知识图谱的实例,提供对图形数据的存储和查询功能。entities_vdb: BaseVectorStorage,# 这是一个存储实体的向量数据库实例,用于根据查询获取相关的实体。text_chunks_db: BaseKVStorage[TextChunkSchema],# 这是一个存储文本块的键值存储实例,用于查找与实体相关的文本单元。query_param: QueryParam,):results = await entities_vdb.query(query, top_k=query_param.top_k)# 这是从 entities_vdb 中查询得到的结果,包含与输入查询相关的实体信息。使用 top_k 参数限制返回的实体数量。node_datas = await asyncio.gather(# 包含从知识图谱中获取的节点数据。通过 asyncio.gather 并行获取每个实体的详细信息。*[knowledge_graph_inst.get_node(r["entity_name"]) for r in results])node_degrees = await asyncio.gather(# 包含每个实体的度(即与该实体相连的边的数量)*[knowledge_graph_inst.node_degree(r["entity_name"]) for r in results])node_datas = [# 包含每个节点的详细信息、实体名称和排名。通过 zip 函数将 results、node_datas 和 node_degrees 组合在一起。{**n, "entity_name": k["entity_name"], "rank": d}for k, n, d in zip(results, node_datas, node_degrees)if n is not None]use_text_units = await _find_most_related_text_unit_from_entities(# 获取的与实体相关的文本单元node_datas, query_param, text_chunks_db, knowledge_graph_inst)
use_relations = await _find_most_related_edges_from_entities(# 获取的与实体相关的关系node_datas, query_param, knowledge_graph_inst)......
Copy
_build_global_query_context 的区别数据来源:buildlocal_query_context主要从实体向量数据库中查询相关的实体,而buildglobal_query_context则从关系向量数据库中查询相关的关系。 处理的对象:buildlocal_query_context处理的是节点(实体),而buildglobal_query_context处理的是边(关系)。 上下文构建:buildlocal_query_context主要构建与特定查询相关的上下文,而buildglobal_query_context则构建与关键词相关的全局上下文。 返回结果: 两者都返回格式化的字符串,但内容不同。前者返回的是与查询相关的实体和文本单元,后者返回的是与关键词相关的关系和实体。 前者专注于具体的查询,而后者则关注更广泛的关键词和相关的关系。
|