ingFang SC", "Microsoft YaHei", sans-serif;font-size: medium;font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;font-weight: 400;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">“用一个语言模型,看图说话,直接吐出结构化文本,靠自打自喂进化。”ingFang SC", "Microsoft YaHei", sans-serif;font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">一、定义ingFang SC", "Microsoft YaHei", sans-serif;font-size: medium;font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;font-weight: 400;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">端到端视觉-语言OCR:
ingFang SC", "Microsoft YaHei", sans-serif;font-size: medium;font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;font-weight: 400;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">输入一张文档图 → 输出 Markdown + HTML 表格,中间无OCR、无版式分析、无规则引擎。ingFang SC", "Microsoft YaHei", sans-serif;font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">二、架构极简主义ingFang SC", "Microsoft YaHei", sans-serif;font-size:medium;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;orphans:2;text-align:start;text-transform:none;widows:2;word-spacing:0px;-webkit-text-stroke-width:0px;white-space:normal;text-decoration-thickness:initial;text-decoration-style:initial;text-decoration-color:initial;min-width:285px;"> | | |
|---|
|
| 视觉编码器 | | 不是ViT-Base,是“适合批处理的视觉Tokenizer” —— 平衡分辨率与推理速度 |
| 语言模型 | | 不用7B,省显存;用Instruct版,天生懂指令 |
| 输入格式 | | “请提取为Markdown和HTML” —— 指令即任务 |
| 输出格式 | | |
ingFang SC", "Microsoft YaHei", sans-serif;font-size: medium;font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;font-weight: 400;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">→
一切结构化,都是语言模型“猜”出来的。ingFang SC", "Microsoft YaHei", sans-serif;font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">三、核心创新:自演化训练(Self-Evolution)
ingFang SC", "Microsoft YaHei", sans-serif;font-size: medium;font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;font-weight: 400;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;" class="list-paddingleft-1">
第一阶段:用合成文档(AI生成PDF→截图+文本对)教它基本能力第二阶段:让模型自己给真实文档打标签 → 挑高质量生成结果 → 用这些“自产数据”再训练自己ingFang SC", "Microsoft YaHei", sans-serif;font-size: medium;font-style: normal;font-variant-ligatures: normal;font-variant-caps: normal;font-weight: 400;letter-spacing: normal;orphans: 2;text-align: start;text-indent: 0px;text-transform: none;widows: 2;word-spacing: 0px;-webkit-text-stroke-width: 0px;white-space: normal;text-decoration-thickness: initial;text-decoration-style: initial;text-decoration-color: initial;">→
像人自学:先看教材,再自己做题,对答案,错的重来无需人工标注真实数据 → 可无限扩展
模型越强,数据越准 → 正反馈闭环
四、性能真相
→不是最强,但最平衡:不输专业OCR,省掉5个模块。
五、适用场景
→不适配:手写笔记、老档案、杂乱照片、多语言混排。
总结
POINTS-Reader 不是OCR的升级,而是用LLM重构了OCR的定义:不是“识别文字”,而是“理解文档”。
它把十年的OCR技术栈,压缩成一个会看图的对话模型,靠自动生成数据成长,靠指令驱动一切。
它不完美,但它证明了一件事:你不需要复杂的系统,你只需要一个足够强的模型,和一个会“喂自己”的训练法。
https://github.com/Tencent/POINTS-Reader