返回顶部
热门问答 更多热门问答
技术文章 更多技术文章

AI大模型奖励优化之开源数据

[复制链接]
链载Ai 显示全部楼层 发表于 半小时前 |阅读模式 打印 上一主题 下一主题

一、前言

奖励模型在强化学习中起着至关重要的作用,它决定了智能体如何从与环境的交互中学习并优化策略,以实现预定的任务目标。

二、奖励模型实现之开源数据

奖励模型主要包括数据收集、模型训练和开源数据三个方面的实现。本文主要讲解数据收集。

2.1 开源数据

针对奖励模型已经有一些开源数据集可以使用,主要包括OpenAI 针对摘要任务提出的Summarize from Feedback 数据集,以及针对WebGPT 任务构建的人类反馈数据集。此外,还有Anthropic 团队提出的HH-RLHF 数据集和斯坦福开放出来的质量判断数据集。 OpenAI 在2020 年就将RLHF 技术引入摘要生成,提出了Summarize from Feedback 数据集。首先通过人类偏好数据训练一个奖励模型,再利用奖励模型训练一个与人类偏好相匹配的摘要模型。该数据集分为两部分:对比部分和轴向部分。

  • 对比部分共计17.9 万条数据,标注者从两个摘要中选择一个更好的摘要。
  • 轴向部分则有共计1.5 万条数据,使用Likert 量表为摘要的质量评分。 需要注意的是,对比部分仅有训练和验证划分,而轴向部分仅有测试和验证划分。

WebGPT使用人类反馈训练了一个奖励模型,来指导模型提升长文档问答能力,使其与人类的偏好相符。该数据集包含在WebGPT 项目结束时被标记为适合奖励建模的所有对比数据,总计1.9 万条数据。Anthropic 的HH-RLHF 数据集主要分为两大部分。第一部分是关于有用性和无害性的人类偏好数据,共计17 万条。 这些数据的目标是为强化学习的训练提供奖励模型,但并不适合直接用于对话模型的训练,因为这样可能会导致模型产生不良行为。第二部分是由人类生成并注释的红队测试对话。 这部分数据可以帮助我们了解如何对模型进行更深入的鲁棒性测试,并发现哪些攻击方式更有可能成功。

Stanford Human Preferences(SHP)数据集包含38.5 万条来自18 个不同领域的问题和指令,覆盖了从烹饪到法律建议的多个话题。 这些数据衡量了人们对哪个答案更有帮助的偏好,旨在为RLHF 奖励模型和自然语言生成评估模型提供训练语料。具体来说,每条数据都是Reddit 的一篇帖子。 这篇帖子中会有一个问题或指示,以及两条高赞评论作为答案。SHP 数据构造时通过一定的筛选规则,选择点赞更多的评论作为人类更加偏爱的回复。SHP 和Anthropic 的HH-RLHF有所不同。最大的差异在于SHP 里的内容都是Reddit 用户自然产生的,而HH-RLHF 中的内容则是机器生成的。 这意味着这两个数据集的内容风格和特点都大有不同,可以互为补充。

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

链载AI是专业的生成式人工智能教程平台。提供Stable Diffusion、Midjourney AI绘画教程,Suno AI音乐生成指南,以及Runway、Pika等AI视频制作与动画生成实战案例。从提示词编写到参数调整,手把手助您从入门到精通。
  • 官方手机版

  • 微信公众号

  • 商务合作

  • Powered by Discuz! X3.5 | Copyright © 2025-2025. | 链载Ai
  • 桂ICP备2024021734号 | 营业执照 | |广西笔趣文化传媒有限公司|| QQ