返回顶部
热门问答 更多热门问答
技术文章 更多技术文章

AI 进阶实战 | 走进大模型(LLM) 智能体(Agent) 提示词(Prompt)

[复制链接]
链载Ai 显示全部楼层 发表于 半小时前 |阅读模式 打印 上一主题 下一主题

ingFang SC", Cambria, Cochin, Georgia, Times, "Times New Roman", serif;letter-spacing: normal;text-align: left;visibility: visible;">前言

ingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;white-space: normal;background-color: rgb(255, 255, 255);letter-spacing: 0.578px;visibility: visible;">人工智能(AI)不再只是科幻电影中的桥段,而是正以前所未有的速度改变着我们的世界。随着大规模语言模型(LLM)系列的崛起,结合高度智能的(Agent)与精心设计的(Prompt),AI 技术正步入一个全新的进阶实战阶段。

ingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;white-space: normal;background-color: rgb(255, 255, 255);letter-spacing: 0.578px;visibility: visible;">本文将带您深入探索这一前沿领域,揭秘如何运用 LLM 大模型、智能体 Agent 与提示词 Prompt,共同编织出未来智能生态的宏伟蓝图。

ingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;white-space: normal;background-color: rgb(255, 255, 255);letter-spacing: 0.578px;visibility: visible;">

与你一起解锁 LLM 大模型+智能体 Agent +精妙 Prompt:实战进阶,重塑未来智能生态!
【打造一款带记忆功能的AI智能通用问答产品】

ingFang SC", Cambria, Cochin, Georgia, Times, "Times New Roman", serif;letter-spacing: normal;text-align: left;visibility: visible;">No.1 实操环境准备

PyCharm 编辑器+Python 编程神器 Jupyter Notebook(可以在线调试-便捷)

ingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;white-space: normal;background-color: rgb(255, 255, 255);text-align: center;visibility: visible;">

ingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;letter-spacing: 0.544px;white-space: normal;background-color: rgb(255, 255, 255);text-align: left;visibility: visible;">FastAPI(极简、快速、高性能Web框架)+redis(数据缓存、存储服务)

pipinstallfastapiuvicornopenairedis

ingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;white-space: normal;background-color: rgb(255, 255, 255);letter-spacing: 0.578px;">设置如上-会话存储的 hash 结构:具体的 value 即回答的 N 条真实记录(可结合实际会话ID进行关联),到这里准备工作就已经完成了。

ingFang SC", system-ui, -apple-system, BlinkMacSystemFont, "Helvetica Neue", "Hiragino Sans GB", "Microsoft YaHei UI", "Microsoft YaHei", Arial, sans-serif;white-space: normal;background-color: rgb(255, 255, 255);letter-spacing: 0.578px;">

ingFang SC", Cambria, Cochin, Georgia, Times, "Times New Roman", serif;letter-spacing: normal;text-align: left;visibility: visible;">No.2项目工程搭建

建立 Python Project:这里 LLM 采用 KIMI(moonshot):

模型版本选择(moonshot-v1-32k)+ 精妙提示词(prompt)设定(高质量的提示词可以帮助模型理解人类的目标,换言之人类直接向模型提出命令或一条通向目标的推理路径。设计一个更有效的交互策略,使得模型生成的内容能符合人的意图和需求)

输入如下命令,启动开发服务器并在代码变更时自动重新加载。

uvicornmain:app--reload--host127.0.0.1--port8888

这样,就能够提供对外的 API 接口出来了,接口调用效果如下:

当然,我们也可以使用 Restlet Client 进行 Rest API Testing:


No.3智能问答调试

这里,我们给定一些日常话题来看看咨询效果:

因为在之前调试的时候,有些问题已经有了记忆属性,但还是能够看出 AI 可以精准理解我们的输入意图。

对应在 Jupyter Notebook 中的回答效果如下:

看到这里,想必大家对线上众多智能体产品使用体验,不再感觉很神秘了吧。
我们来将提问结合语义、语境升华一下:

接下来,以一个真实案例嵌入:多语-国际化,这里选择一个在多语言环境存在不一样词性的词。


输入请帮我用中文繁体翻译下这段话:

即将发布一个带有新发型妆造的广告

对应Jupyter Notebook 回答:可以看出对“发”这个词依旧准确地给出了答案。

诚然,Encoder-Decoder的过程:从信息的压缩与抽象->信息的还原与创造。

Encoder 它能够将图像、文本等复杂数据转换成高维向量空间中的特征表示,这些特征既保留了原始数据的核心信息,又便于后续的模型处理与理解。
Decoder 它负责将 Encoder 处理后的数据还原回人类可理解的形式,无论是文字、图像还是声音,并且它还能在解码过程中融入创造力,通过生成对抗网络(GANs)等先进技术,生成全新的、逼真的内容,如高清图像、逼真语音等。
Encoder-Decoder 架构,这一架构在机器翻译、语音识别、图像生成等众多领域展现出了惊人的能力。以机器翻译为例,输入源语言的句子经过 Encoder 编码成一系列向量,再由 Decoder 解码成目标语言的句子,整个过程流畅自然,几乎达到了人类翻译的水平。
在自动驾驶领域,Encoder-Decoder 架构也被广泛应用于环境感知与决策制定。车辆通过摄像头、雷达等传感器收集到的海量数据,经过 Encoder 处理后提取关键信息,再由 Decoder 转化为车辆的控制指令,实现安全高效的自动驾驶。

Ok,now,那我们来继续检测一下上下文联想效果:看看之前咨询的问题,在其背后是如何经过决策并将答案呈现至用户眼前的?

*温馨提示*:上述case经过多次调试-调优过程,对背后技术实现原理感兴趣的可后台私信一起探讨><


【末尾彩蛋】

task1:采用 RAG(Retrieval-Augmented Generation)理念。
我们首先将历史对话记录整合进知识库。接着,通过嵌入技术(embedding)处理这些记录,并将它们存储于向量数据库(vectorstore)中。
在接收到查询(query)时,系统会执行搜索匹配,筛选出与查询最相关的文本片段。这些文本片段随后将与查询一同提交给大型语言模型(LLM),以生成回答。
task2:保持对话连贯性、最新信息的实时性。此外,系统会分阶段对对话进行汇总,但最近N条记录将保持独立,不进行汇总,直接用于 LLM 的回答过程中。这样的设计旨在保持对话的连贯性,同时确保最新信息的实时性。

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

链载AI是专业的生成式人工智能教程平台。提供Stable Diffusion、Midjourney AI绘画教程,Suno AI音乐生成指南,以及Runway、Pika等AI视频制作与动画生成实战案例。从提示词编写到参数调整,手把手助您从入门到精通。
  • 官方手机版

  • 微信公众号

  • 商务合作

  • Powered by Discuz! X3.5 | Copyright © 2025-2025. | 链载Ai
  • 桂ICP备2024021734号 | 营业执照 | |广西笔趣文化传媒有限公司|| QQ