前言成熟测试团队会产出大量自动化代码,因测试人员的经验和习惯原因,代码质量可能参差不齐,通常需要依靠专家code review(CR)来确保产出的测试代码质量,借助大模型进行CR已经成为一种趋势,可以提高CR效率和有效性。 大模型CR优势自动化检查:利用大模型对代码进行自动化检查,可以快速识别出语法错误、代码风格问题、潜在安全漏洞等。这种自动化过程减少了人工审查的工作量,使开发者能够更加专注于代码的逻辑和功能问题。 减少重复工作:传统的人工CR往往会耗费大量时间在识别低级错误上,而大模型可以有效过滤这些错误,从而让审查者能够关注更有价值的逻辑和设计问题。 快速反馈:结合Gitlab CI等工具,大模型能够在代码提交后立即执行CR,并提供即时反馈,大大缩短了反馈周期。
借助AI进行CR可参考其他文档【第2924期】如何在 Gitlab 中使用 ChatGPT 进行 CodeReview,里面有详细代码修改方法可供参考 简单来讲,可发起Merge Request(MR)请求的时候使用Gitlab CI触发该任务,借助中间平台,调用大模型并给到反馈,信息回到Gitlab。 
给到的提示词例如: 以下代码是GitLab代码补丁。请以测试专家的角度,从自动化测试用例设计;代码的实现;可改进的领域;这几个角度,给出详细的例子进行解释,尽量少离题和耍幽默。 这种模式,在CR具体场景内仍然会存在一些问题: 只针对表层问题,无法深度分析:拿UI自动化举例,通用大模型无法识别公共方法和业务相关的方法,这样给CR的深度会造成很大限制 一致性检查:代码风格命名,测试数据的管理方式,case写法有较多的个性化的内容因团队而异,没有业界的统一标准,这方面AI难免会有误判 修复建议噪音高:在review质量不够100%有效情况下,放入MR 的comments会非常困难,由谁去Resolve 提出的修改建议也是一个难题
借助RAG加强CR改进思路 通过构造合适的prompt将约束条件,构建知识库系统来做规范管理,提供更加丰富和标准的信息,这里就要用到前序文章中对RAG的论述:AI系列-谈测试团队自建私有大模型VS使用通用大模型 Review结果适合通过企信(钉钉)消息发出,而不是直接在gitlab评论上,CR建议只供参考,具体的Comments动作和Resolve过程由实际的Review人员来进行
现有业界的RAG支撑系统很多,这里我们选择的是FastGPT的平台,其他还有Dify,QAnything等,对CR场景没有太大区别,这里以fastGPT作为举例说明如何形成CR思路 
搭建步骤初始化CR知识库
这里非常重要,个性化的信息主要通过有效的知识库来实现: 测试基础方法的信息,明确哪些是最佳方法以及语义 对测试代码规范自定义信息 不同业务线的要求,例如给到最佳实践的代码模板
新建FastGPT项目
选取待CR的Repo从gitlab内筛选想要review的项目ID

优化提示词测试代码的提示词可参考: 假设你是测试开发工程师,现在你的任务是阅读GitLab代码变更,使用中文给出修改建议。建议要求:a.必须使用知识库给出建议;生成的建议语句通顺;b.指明具体位置,使用例子进行解释,只需要给出少量关键代码不要全部输出;d.不要脱离给定的代码;e.不要复述原代码;f.不要给出重复建议;g.评审建议不超过700字符;下面是GitLab代码变更:(后面附上MR的变更代码) 触发Review调用GET:https://fastqa.xxxx.com/api/review/work?projectId=xxxxx&mrId=xx接口即可发起Review,此处我们改造fastGPT代码去抓取Gitlab的MR信息和代码变更 projectId:项目ID mrId:MR请求ID
在Gitlab CI中添加以下内容 curl--location"https://fastqa.xxxxx.com/api/review/work?projectId=$CI_MERGE_REQUEST_PROJECT_ID&mrId=$CI_MERGE_REQUEST_IID"
这样MR请求的时候就会触发Review任务,结果触发企信机器人。 结果查看Review结束的时候企业微信(钉钉)会收到消息 

打开企业微信(钉钉)通知中的链接就可以查看结果,高价值的CR信息具体review同学或者mgr可以补充到gitlab上进行修改,使用平台人员标记Review结果是否有效便于后续优化 
实际内部CR实践摘取对公司内某一个真实自动化代码的一些建议 
从初步实践的情况看: 确实可产出大量值得采纳的建议 存在一些误报情况,和AI目前返回数据的不确定性相关,但可通过调优知识库进行优化
|