返回顶部
热门问答 更多热门问答
技术文章 更多技术文章

炸裂!最强开源模型新王通义千问2.5 72B被我用4GB老显卡本地跑通了!

[复制链接]
链载Ai 显示全部楼层 发表于 1 小时前 |阅读模式 打印 上一主题 下一主题

炸裂!最强开源模型一夜之间易主。

阿里发布千问2.5模型,72B版本在MMLU、MATH、MBPP等大部分评测指标上都超过了Llama3 405B,甚至一些指标也超过了GPT4o。正式加冕最强开源模型新王!

今天要挑战用我的4GB老显卡不做量化、不做压缩,看看能不能跑起来这个72B模型。

X上边各个国家也都爆发了关于Qwen模型的讨论:

01

ingFang SC", "Microsoft YaHei", "Source Han Sans SC", "Noto Sans CJK SC", "WenQuanYi Micro Hei", sans-serif;font-optical-sizing: inherit;font-kerning: inherit;font-feature-settings: inherit;font-variation-settings: inherit;clear: left;color: rgb(25, 27, 31);letter-spacing: normal;text-align: start;background-color: rgb(255, 255, 255);visibility: visible;">我的4GB老显卡还能用吗?

A100,H100暂时还没有购入,主要的原因是穷。

目前主力显卡是一个4GB的老显卡:

4GB显卡直接尝试运行时,是这个画风:

02

ingFang SC", "Microsoft YaHei", "Source Han Sans SC", "Noto Sans CJK SC", "WenQuanYi Micro Hei", sans-serif;font-optical-sizing: inherit;font-kerning: inherit;font-feature-settings: inherit;font-variation-settings: inherit;clear: left;color: rgb(25, 27, 31);letter-spacing: normal;text-align: start;background-color: rgb(255, 255, 255);visibility: visible;">72B的千问有多大?

72B的千问用18T个token训练而成,有80层。加载这个模型大概需要37块我这样的4GB显卡。差得不多。还差36块。

因此需要想一个办法。

03

ingFang SC", "Microsoft YaHei", "Source Han Sans SC", "Noto Sans CJK SC", "WenQuanYi Micro Hei", sans-serif;font-optical-sizing: inherit;font-kerning: inherit;font-feature-settings: inherit;font-variation-settings: inherit;clear: left;color: rgb(25, 27, 31);letter-spacing: normal;text-align: start;background-color: rgb(255, 255, 255);visibility: visible;">分层推理

解决方案就是分层推理,每次只80层中的一层进显存:

04

ingFang SC", "Microsoft YaHei", "Source Han Sans SC", "Noto Sans CJK SC", "WenQuanYi Micro Hei", sans-serif;font-optical-sizing: inherit;font-kerning: inherit;font-feature-settings: inherit;font-variation-settings: inherit;clear: left;color: rgb(25, 27, 31);letter-spacing: normal;text-align: start;background-color: rgb(255, 255, 255);visibility: visible;">开源

代码全部开源到了开源项目AirLLM中,可以在github找到。

除了QWen2.5,AirLLM也支持Llama3 400B,Mixtral等模型。

叠个甲:4GB能跑但是速度肯定不会太快(4GB的卡还要啥自行车啊?)因此不适合chatbot等实时场景,仅适合异步数据处理等场景。

推理过程只需要几行代码:

from airllm import AutoModel
MAX_LENGTH = 128model = AutoModel.from_pretrained("Qwen/Qwen2.5-72B-Instruct")
input_text = ['What is the capital of United States?',]
input_tokens = model.tokenizer(input_text,return_tensors="pt", return_attention_mask=False, truncation=True, max_length=MAX_LENGTH, padding=False)
generation_output = model.generate(input_tokens['input_ids'].cuda(), max_new_tokens=20,use_cache=True,return_dict_in_generate=True)
output = model.tokenizer.decode(generation_output.sequences[0])
print(output)


回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

链载AI是专业的生成式人工智能教程平台。提供Stable Diffusion、Midjourney AI绘画教程,Suno AI音乐生成指南,以及Runway、Pika等AI视频制作与动画生成实战案例。从提示词编写到参数调整,手把手助您从入门到精通。
  • 官方手机版

  • 微信公众号

  • 商务合作

  • Powered by Discuz! X3.5 | Copyright © 2025-2025. | 链载Ai
  • 桂ICP备2024021734号 | 营业执照 | |广西笔趣文化传媒有限公司|| QQ