|
一种基于LLM(LargeLanguage Model)的能够感知环境、做出决策并执行行动以实现特定目标的自主系统。与传统人工智能不同,Al Agent 模仿人类行为模式解决问题,通过独立思考和调用工具逐步完成给定目标,实现自主操作。 通用智能体平台 以Agent为核心技术驱动,构建通用智能体平台,通过在智能体感知、记忆、规划和执行各关键环节的能力攻关,以适应不断变化的实际业务和日常办公需求,提供更加个性化和精准的服务,并助力工程人员解放脑、解放手、想的更全、做的更准,共同推动了其在更多复杂场景下的应用。 什么是LLM (Large Language Model) 大语言模型是一类基于深度学习的人工智能模型,旨在处理和生成自然语言文本。通过训练于大规模文本数据,使得大语言模型能够理解并生成与人类语言相似的文本,执行各类自然语言处理任务。 LLM的训练及使用 LLM能够理解并生成与人类语言相似的文本,执行各类自然语言处理任务,具体可应用场景包括而不限于文本生成、机器翻译、摘要生成、对话系统、情感分析等。其具有强大的泛化能力、能够处理多种任务。 LLM的训练 LLM的训练过程分为预训练和微调两个阶段。 模型在大规模未标注文本数据上进行自监督学习,学习通用的语言表示。 模型在特定任务的标注数据上进行有监督学习,调整模型参数以适应具体任务需求。 LLM的使用 一方面,对于直观的日常使用,用户输入问题(提示词,Prompt),大模型给出该问题的回答。 另一方面,对于基于LLM的AI应用编程,可通过以指定格式调用LLM的API,获取问题的答案。 基于LLM的Agent框架
LLM的核心技术架构是Transformer,这是一个基于自注意力机制的深度学习模型。Transformer架构的关键在于其能够并行处理序列数据,大大提高了模型的训练效率和性能 参数规模 LLM通常采用大规模神经网络,参数数量从数百万到数十亿不等,例如通义干问(Qwen-7B)具有70亿的参数规模训练数据需要高质量的、经过预处理的多模态数据。参数规模的增加使模型具有更强的学习和泛化能力,能够处理复杂的语言任务,但也带来了计算成本和资源需求的显著增加。
LLM回答用户问题时,是基于训练LLM时使用的文本数据进行的。而面对未知知识的问题,它并不能正确回答而容易产生错误的结果,即大模型的幻觉。 什么是RAG RAG(Retrieval-augmented Generation)是一种自然语言查询方法,通过一个检索信息组件从外部知识源获取附加信息,馈送到LLM prompt以更准确地回答所需的问题。通过额外的知识来增强LLM 以回答问题,用以减少 LLM产生幻觉的倾向。 利用RAG减少幻觉 基于RAG技术,可以通过构建一个知识库,让LLM能够在回答问题时以这个知识库为基础,具备回答知识库中的相关内容的能力。 RAG的优势 基于RAG技术创建的知识库,可以比较便利地增删改其中的文档,可以支持更频繁的更新。 RAG的整体流程 RAG的整体流程分为两大步: RAG的效果 提示词(Prompt)是指向LLM提供输入以引导其生成特定输出的文本或指令。 提示词 提示词包括两类,系统提示词与用户提示词。用户提示词即为用户的问题;系统提示词为人工智能应用内置的指向LLM的一组初始指令或背景信息,用于指导LLM的行为方式和响应模式。 一般情况下,提示词更多的是指用户提示词、即用户发送给LLM的问题。 提示词对LLM的影响 在生成文本时,LLM会试图理解并根据其理解生成相应的响应LLM生成的回答的质量受用户提示词的影响,更完善的提示词能够让LLM更好地理解用户意图、给出更契合更完善的回答 如何优化提示词 在提出用户问题时候,应该清晰而具体地表达指令,提出具体的需求;如果对LLM的输出格式有要求,那么最好提供参考文本作为示例。 如何编写更好的提示词 更为完善的提示词基本组成部分: 下图为具体的示例(询问旅游规划),可以发现,在直接使用例如OpenAI等提供的LLM时,为了获取更好的问答体验,需要花费较长时间、较多心思来编写更好更完善的提示词,使用体验反而可能变差了 |